Suppr超能文献

细胞膜上的反应:连续介质理论与布朗动力学模拟的比较。

Reactions on cell membranes: comparison of continuum theory and Brownian dynamics simulations.

作者信息

Monine Michael I, Haugh Jason M

机构信息

Department of Chemical and Biomolecular Engineering, North Carolina State University, Box 7905, 911 Partners Way, Raleigh, North Carolina 27695-7905, USA.

出版信息

J Chem Phys. 2005 Aug 15;123(7):074908. doi: 10.1063/1.2000236.

Abstract

Biochemical transduction of signals received by living cells typically involves molecular interactions and enzyme-mediated reactions at the cell membrane, a problem that is analogous to reacting species on a catalyst surface or interface. We have developed an efficient Brownian dynamics algorithm that is especially suited for such systems and have compared the simulation results with various continuum theories through prediction of effective enzymatic rate constant values. We specifically consider reaction versus diffusion limitation, the effect of increasing enzyme density, and the spontaneous membrane association/dissociation of enzyme molecules. In all cases, we find the theory and simulations to be in quantitative agreement. This algorithm may be readily adapted for the stochastic simulation of more complex cell signaling systems.

摘要

活细胞接收到的信号的生化转导通常涉及细胞膜上的分子相互作用和酶介导的反应,这一问题类似于催化剂表面或界面上的反应物种。我们开发了一种特别适用于此类系统的高效布朗动力学算法,并通过预测有效酶速率常数的值,将模拟结果与各种连续介质理论进行了比较。我们特别考虑了反应与扩散限制、酶密度增加的影响以及酶分子的自发膜结合/解离。在所有情况下,我们发现理论和模拟结果在数量上是一致的。该算法可以很容易地适用于更复杂细胞信号系统的随机模拟。

相似文献

1
Reactions on cell membranes: comparison of continuum theory and Brownian dynamics simulations.
J Chem Phys. 2005 Aug 15;123(7):074908. doi: 10.1063/1.2000236.
2
Diffusion on ruffled membrane surfaces.
J Chem Phys. 2007 Jun 21;126(23):235103. doi: 10.1063/1.2739526.
3
Enhancement of diffusion-controlled reaction rates by surface-induced orientational restriction.
Biophys J. 2006 Feb 1;90(3):896-902. doi: 10.1529/biophysj.105.072785. Epub 2005 Nov 18.
4
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
5
When does the Michaelis-Menten equation hold for fluctuating enzymes?
J Phys Chem B. 2006 Oct 19;110(41):20093-7. doi: 10.1021/jp065187g.
6
Inertial effects in diffusion-limited reactions.
J Phys Condens Matter. 2010 Mar 17;22(10):104116. doi: 10.1088/0953-8984/22/10/104116. Epub 2010 Feb 23.
9
Substrate concentration dependence of the diffusion-controlled steady-state rate constant.
J Chem Phys. 2005 May 8;122(18):184902. doi: 10.1063/1.1887165.
10
Monte Carlo simulation and molecular theory of tethered polyelectrolytes.
J Chem Phys. 2007 Jun 28;126(24):244902. doi: 10.1063/1.2747600.

引用本文的文献

1
The Influence of Molecular Reach and Diffusivity on the Efficacy of Membrane-Confined Reactions.
Biophys J. 2019 Oct 1;117(7):1189-1201. doi: 10.1016/j.bpj.2019.08.023. Epub 2019 Aug 28.
2
A spatio-temporal model reveals self-limiting FcRI cross-linking by multivalent antigens.
R Soc Open Sci. 2018 Sep 26;5(9):180190. doi: 10.1098/rsos.180190. eCollection 2018 Sep.
3
A model-based analysis of tissue targeting efficacy of nanoparticles.
J R Soc Interface. 2018 Mar;15(140). doi: 10.1098/rsif.2017.0787.
5
Architecture and biogenesis of plus-strand RNA virus replication factories.
World J Virol. 2013 May 12;2(2):32-48. doi: 10.5501/wjv.v2.i2.32.
6
Dynamics of enzymatic digestion of elastic fibers and networks under tension.
Proc Natl Acad Sci U S A. 2011 Jun 7;108(23):9414-9. doi: 10.1073/pnas.1019188108. Epub 2011 May 23.
7
Analysis of reaction-diffusion systems with anomalous subdiffusion.
Biophys J. 2009 Jul 22;97(2):435-42. doi: 10.1016/j.bpj.2009.05.014.
8
Signal transduction at point-blank range: analysis of a spatial coupling mechanism for pathway crosstalk.
Biophys J. 2008 Sep;95(5):2172-82. doi: 10.1529/biophysj.108.128892. Epub 2008 May 23.
9
Spatial regulation and the rate of signal transduction activation.
PLoS Comput Biol. 2006 May;2(5):e44. doi: 10.1371/journal.pcbi.0020044. Epub 2006 May 12.

本文引用的文献

1
Stochastic model of autocrine and paracrine signals in cell culture assays.
Biophys J. 2003 Dec;85(6):3659-65. doi: 10.1016/S0006-3495(03)74783-3.
2
Self organization of membrane proteins via dimerization.
Biophys Chem. 2003 May 1;104(1):217-27. doi: 10.1016/s0301-4622(02)00369-1.
3
Untangling ligand induced activation and desensitization of G-protein-coupled receptors.
Biophys J. 2003 Jan;84(1):3-13. doi: 10.1016/S0006-3495(03)74828-0.
4
A spatial focusing model for G protein signals. Regulator of G protein signaling (RGS) protien-mediated kinetic scaffolding.
J Biol Chem. 2003 Feb 28;278(9):7278-84. doi: 10.1074/jbc.M208819200. Epub 2002 Nov 21.
5
Monte carlo simulations of enzyme reactions in two dimensions: fractal kinetics and spatial segregation.
Biophys J. 2002 Oct;83(4):1891-901. doi: 10.1016/S0006-3495(02)73953-2.
6
A unified model for signal transduction reactions in cellular membranes.
Biophys J. 2002 Feb;82(2):591-604. doi: 10.1016/S0006-3495(02)75424-6.
7
Pseudo First-Order Cleavage of an Immobilized Substrate by an Enzyme Undergoing Two-Dimensional Surface Diffusion.
J Colloid Interface Sci. 1999 May 1;213(1):81-86. doi: 10.1006/jcis.1999.6109.
9
Physical modulation of intracellular signaling processes by locational regulation.
Biophys J. 1997 May;72(5):2014-31. doi: 10.1016/S0006-3495(97)78846-5.
10
A Monte Carlo study of the dynamics of G-protein activation.
Biophys J. 1994 Sep;67(3):1345-57. doi: 10.1016/S0006-3495(94)80606-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验