一项关于粒径对药物递送纳米颗粒组织渗透功效影响的多尺度建模研究。
A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.
作者信息
Islam Mohammad Aminul, Barua Sutapa, Barua Dipak
机构信息
Department of Chemical and Biochemical Engineering, University of Missouri Science and Technology, Rolla, Missouri, USA.
出版信息
BMC Syst Biol. 2017 Nov 25;11(1):113. doi: 10.1186/s12918-017-0491-4.
BACKGROUND
Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles.
RESULTS
We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue.
CONCLUSION
Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.
背景
粒径是药物递送纳米颗粒设计的关键参数。人们认为纳米颗粒的大小可能对其克服生物组织中转运屏障的能力有重要影响。然而,这种影响仍知之甚少。本研究使用多尺度模型,探究粒径对药物递送纳米颗粒组织分布和渗透效果的影响。
结果
我们建立了生物组织中纳米颗粒转运的多尺度时空模型。该模型采用了时间自适应布朗动力学算法,将微观尺度的颗粒 - 细胞相互作用和黏附动力学与组织尺度的颗粒扩散和渗透联系起来。该模型考虑了颗粒的平流、扩散和细胞摄取。利用该模型,我们分析了粒径如何影响药物递送纳米颗粒在组织内的扩散和渗透。我们重点关注了两项已发表的实验研究,它们分别研究了体外和体内组织条件下的粒径效应。通过分析这两项研究报告的实验数据,我们发现粒径效应在体外无细胞组织系统(如胶原基质)中可能很显著。在体内组织系统中,粒径的影响可能相对较小。我们详细分析了颗粒 - 细胞相互作用如何决定纳米颗粒在生物组织中的分布和渗透。
结论
我们的研究表明,纳米颗粒的大小在其克服组织内转运屏障的能力方面可能发挥的作用较小。我们发现,由于缺乏平流运输和颗粒 - 细胞相互作用,涉及无细胞组织系统的实验可能会对粒径效应产生误导性的观察结果。
相似文献
J Control Release. 2016-9-28
Comput Methods Programs Biomed. 2013-7-18
J R Soc Interface. 2018-3
Artif Cells Nanomed Biotechnol. 2018-5-17
Biotechnol Bioeng. 2008-10-1
Proc Natl Acad Sci U S A. 2024-5-28
引用本文的文献
Front Drug Deliv. 2024-3-4
BioTechnologia (Pozn). 2024-12-19
BioTechnologia (Pozn). 2023-9-25
本文引用的文献
Nat Biotechnol. 2015-9
Curr Opin Struct Biol. 2015-4
Philos Trans R Soc Lond B Biol Sci. 2015-2-5
Environ Sci Technol. 2014-10-14