Mourant Judith R, Short Kurt W, Carpenter Susan, Kunapareddy Nagapratima, Coburn Leslie, Powers Tamara M, Freyer James P
Los Alamos National Laboratory, MS E535, Bioscience Division, Los Alamos, New Mexico 87544, USA.
J Biomed Opt. 2005 May-Jun;10(3):031106. doi: 10.1117/1.1928050.
Both infrared and Raman spectroscopies have the potential to noninvasively estimate the biochemical composition of mammalian cells, although this cannot be unambiguously determined from analysis approaches such as peak assignment or multivariate classification methods. We have developed a fitting routine that determines biochemical composition using basis spectra for the major types of biochemicals found in mammalian cells (protein, DNA, RNA, lipid and glycogen), which is shown to be robust and reproducible. We measured both infrared and Raman spectra of viable suspensions of pairs of nontumorigenic and tumorigenic rat fibroblast cell lines. To model in vivo conditions, we compared nonproliferating, nontumorigenic cells to proliferating, tumorigenic cells. Reproducible differences in biochemical composition were found for both nontumorigenic/tumorigenic cell models, using both spectroscopic techniques. These included an increased fraction of protein and nucleic acids in the tumorigenic cells, with a corresponding decrease in lipid and glycogen fractions. Measurements of each cell type in both the proliferating and nonproliferating states showed that proliferative status was the major determinant of differences in vibrational spectra, rather than tumorigenicity per se. The smallness of the spectral changes associated with tumorgenicity may be due to the subtle nature of the oncogenic change in this system (a single mutant oncogene).
红外光谱和拉曼光谱都有潜力对哺乳动物细胞的生化组成进行非侵入性估计,尽管通过诸如峰归属或多变量分类方法等分析手段无法明确确定这一点。我们开发了一种拟合程序,该程序使用哺乳动物细胞中主要类型生化物质(蛋白质、DNA、RNA、脂质和糖原)的基础光谱来确定生化组成,结果表明该程序具有稳健性和可重复性。我们测量了非致瘤性和致瘤性大鼠成纤维细胞系对的活细胞悬浮液的红外光谱和拉曼光谱。为了模拟体内条件,我们将非增殖性、非致瘤性细胞与增殖性、致瘤性细胞进行了比较。使用这两种光谱技术,在非致瘤性/致瘤性细胞模型中均发现了生化组成上可重复的差异。这些差异包括致瘤性细胞中蛋白质和核酸的比例增加,同时脂质和糖原比例相应降低。对处于增殖和非增殖状态的每种细胞类型的测量表明,增殖状态是振动光谱差异的主要决定因素,而非致瘤性本身。与致瘤性相关的光谱变化较小可能是由于该系统中致癌变化的微妙性质(单个突变癌基因)。