Suppr超能文献

使用近红外拉曼光谱和分类与回归树技术诊断胃癌。

Diagnosis of gastric cancer using near-infrared Raman spectroscopy and classification and regression tree techniques.

作者信息

Teh Seng Khoon, Zheng Wei, Ho Khek Yu, Teh Ming, Yeoh Khay Guan, Huang Zhiwei

机构信息

National University of Singapore, Faculty of Engineering, Department of Bioengineering, Bioimaging Laboratory, Singapore 117576.

出版信息

J Biomed Opt. 2008 May-Jun;13(3):034013. doi: 10.1117/1.2939406.

Abstract

The purpose of this study is to apply near-infrared (NIR) Raman spectroscopy and classification and regression tree (CART) techniques for identifying molecular changes of tissue associated with cancer transformation. A rapid-acquisition NIR Raman system is utilized for tissue Raman spectroscopic measurements at 785-nm excitation. 73 gastric tissue samples (55 normal, 18 cancer) from 53 patients are measured. The CART technique is introduced to develop effective diagnostic algorithms for classification of Raman spectra of different gastric tissues. 80% of the Raman dataset are randomly selected for spectral learning, while 20% of the dataset are reserved for validation. High-quality Raman spectra in the range of 800 to 1800 cm(-1) are acquired from gastric tissue within 5 s. The diagnostic sensitivity and specificity of the learning dataset are 90.2 and 95.7%; and the predictive sensitivity and specificity of the independent validation dataset are 88.9 and 92.9%, respectively, for separating cancer from normal. The tissue Raman peaks at 875 and 1745 cm(-1) are found to be two of the most significant features to discriminate gastric cancer from normal tissue. NIR Raman spectroscopy in conjunction with the CART technique has the potential to provide an effective and accurate diagnostic means for cancer detection in the gastric system.

摘要

本研究的目的是应用近红外(NIR)拉曼光谱和分类回归树(CART)技术来识别与癌症转化相关的组织分子变化。利用快速采集的近红外拉曼系统在785nm激发下进行组织拉曼光谱测量。对来自53名患者的73个胃组织样本(55个正常样本,18个癌症样本)进行了测量。引入CART技术以开发用于不同胃组织拉曼光谱分类的有效诊断算法。随机选择80%的拉曼数据集用于光谱学习,而20%的数据集留作验证。在5秒内从胃组织中获取了800至1800cm(-1)范围内的高质量拉曼光谱。学习数据集区分癌症与正常组织的诊断敏感性和特异性分别为90.2%和95.7%;独立验证数据集的预测敏感性和特异性分别为88.9%和92.9%。发现875和1745cm(-1)处的组织拉曼峰是区分胃癌与正常组织的两个最重要特征。近红外拉曼光谱结合CART技术有可能为胃系统癌症检测提供一种有效且准确的诊断方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验