Suppr超能文献

预测下次怀孕的时间。

Predicting time to subsequent pregnancy.

作者信息

Gold Rachel, Connell Frederick A, Heagerty Patrick, Cummings Peter, Bezruchka Stephen, Davis Robert, Cawthon Mary Lawrence

机构信息

Department of Epidemiology, Washington State Department of Social and Health Services, Division of Research and Data Analysis, University of Washington (UW) School of Public & Community Medicine, Portland, Oregon, 97239, USA.

出版信息

Matern Child Health J. 2005 Sep;9(3):219-28. doi: 10.1007/s10995-005-0005-7.

Abstract

OBJECTIVES

Women in poverty may benefit from avoiding closely spaced pregnancies. This study sought to identify predictive factors that could identify women at risk for closely spaced pregnancies.

METHODS

We studied 20,028 women receiving welfare (cash assistance) from Washington State. Using Cox proportional hazards methods, we estimated the effects of individual- and community-level variables on time from an index birth until a subsequent pregnancy (between June 1992 and December 1999). Prediction models developed in a random half of our data were validated in the other half. Receiver operator characteristic plots appropriate for proportional hazards models were calculated to compare the sensitivity and specificity of each model.

RESULTS

At 5 years of follow-up, the most predictive model contained just individual-level variables (age, education, race, marital status, number of prior pregnancies); the area under the receiver operator characteristic curve was 0.66 (.62-.69). The addition of community-level variables (percent in poverty, with a high school degree or higher, Black, Hispanic, in an urban area; female unemployment rate; income inequality) added little predictive ability. Differences were found between women with different individual- and community-level characteristics, but the results suggest that these factors are not strong predictors of pregnancy spacing.

CONCLUSIONS

Individual- and community-level characteristics are associated with interpregnancy intervals; however, we found little evidence that the selected variables predicted pregnancy interval in a useful manner.

摘要

目的

贫困妇女可能会因避免短间隔妊娠而受益。本研究旨在确定能够识别有短间隔妊娠风险的女性的预测因素。

方法

我们对20,028名从华盛顿州领取福利(现金援助)的妇女进行了研究。使用Cox比例风险方法,我们估计了个体和社区层面变量对从索引分娩到后续妊娠(1992年6月至1999年12月)的时间的影响。在我们数据的随机一半中开发的预测模型在另一半中进行了验证。计算适用于比例风险模型的受试者工作特征图,以比较每个模型的敏感性和特异性。

结果

在5年的随访中,最具预测性的模型仅包含个体层面的变量(年龄、教育程度、种族、婚姻状况、既往妊娠次数);受试者工作特征曲线下面积为0.66(0.62 - 0.69)。添加社区层面的变量(贫困百分比、拥有高中或更高学历、黑人、西班牙裔、城市地区;女性失业率;收入不平等)几乎没有增加预测能力。在具有不同个体和社区层面特征的女性之间发现了差异,但结果表明这些因素不是妊娠间隔的强预测因素。

结论

个体和社区层面的特征与妊娠间隔有关;然而,我们几乎没有发现证据表明所选变量能够以有用的方式预测妊娠间隔。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验