Suppr超能文献

Three-dimensional FDTD simulation of biomaterial exposure to electromagnetic nanopulses.

作者信息

Simicevic Neven

机构信息

Center for Applied Physics Studies, Louisiana Tech University, PO Box 10348, Ruston, LA 71272, USA.

出版信息

Phys Med Biol. 2005 Nov 7;50(21):5041-53. doi: 10.1088/0031-9155/50/21/007. Epub 2005 Oct 12.

Abstract

Ultra-wideband (UWB) electromagnetic pulses of nanosecond duration, or nanopulses, have recently been approved by the Federal Communications Commission for a number of different applications. They are also being explored for applications in biotechnology and medicine. The simulation of the propagation of a nanopulse through biological matter, previously performed using a two-dimensional finite-difference time-domain (FDTD) method, has been extended here into a full three-dimensional computation. To account for the UWB frequency range, the geometrical resolution of the exposed sample was 0.25 mm and the dielectric properties of biological matter were accurately described in terms of the Debye model. The results obtained from the three-dimensional computation support the previously obtained results: the electromagnetic field inside a biological tissue depends on the incident pulse rise time and width, with increased importance of the rise time as the conductivity increases; no thermal effects are possible for the low pulse repetition rates, supported by recent experiments. New results show that the dielectric sample exposed to nanopulses behaves as a dielectric resonator. For a sample in a cuvette, we obtained the dominant resonant frequency and the Q-factor of the resonator.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验