Suppr超能文献

一种用于胸部CT图像相似性搜索的三目标模型。

A three-object model for the similarity searches of chest CT images.

作者信息

Yu Sung-Nien, Chiang Chih-Tsung, Hsieh Chin-Chiang

机构信息

Department of Electrical Engineering, National Chung Cheng University, 160 San-Hsing, Ming Hsiung, Chia-Yi 621, Taiwan, ROC.

出版信息

Comput Med Imaging Graph. 2005 Dec;29(8):617-30. doi: 10.1016/j.compmedimag.2005.06.001. Epub 2005 Oct 18.

Abstract

We propose in this paper a three-object model specifically for the archiving and retrieval of chest CT images. To calculate parameters for the model, each chest CT image needs to be processed to segment the three main objects and then the features be extracted to describe the objects' properties and relationships. In the image segmentation part, we applied the knowledge of the modality on chest CT images and modified the traditional watershed image segmentation algorithm including a four-step merging algorithm specifically for chest CT images. After segmentation, the mediastinum and two lung lobes are identified. The mediastinum object is mainly described by shape-related features while the two lung lobes are described mainly by texture features. A three-object model was exploited to describe the object features and the spatial relationship among objects. To test the capability of the three-object model to the similarity searches of chest CT images, we developed a CBIR system in which three distinct query modes were provided. They are 'searching by ARGs', 'searching by shape features of mediastinum', and 'searching by texture features of lung lobes'. The experimental results show that the three-object model demonstrates impressive power in the similarity searching of chest CT images. Among the three searching modes, the 'searching by shape features of mediastinum' and 'searching by texture features of lung lobes' modes provide user choices to search for images with high similarities in specific objects rather than in the whole images. The precision rate of either query mode is high, with an average of around 80% out of the first 30 result images are justified as similar, which is impressive in a fully automatic image query system using content features. Nevertheless, the two query modes that concentrate on distinct object features show slightly better capability in searching for similar images than the 'searching by ARGs' mode.

摘要

在本文中,我们提出了一种专门用于胸部CT图像存档和检索的三目标模型。为了计算该模型的参数,需要对每幅胸部CT图像进行处理,以分割出三个主要目标,然后提取特征来描述目标的属性和关系。在图像分割部分,我们运用了胸部CT图像模态的知识,对传统的分水岭图像分割算法进行了改进,包括一种专门针对胸部CT图像的四步合并算法。分割后,可识别出纵隔和两个肺叶。纵隔目标主要通过与形状相关的特征来描述,而两个肺叶主要通过纹理特征来描述。利用三目标模型来描述目标特征以及目标之间的空间关系。为了测试三目标模型在胸部CT图像相似性搜索方面的能力,我们开发了一个基于内容的图像检索(CBIR)系统,其中提供了三种不同的查询模式。它们分别是“按ARGs搜索”、“按纵隔形状特征搜索”和“按肺叶纹理特征搜索”。实验结果表明,三目标模型在胸部CT图像的相似性搜索中表现出了令人印象深刻的能力。在这三种搜索模式中,“按纵隔形状特征搜索”和“按肺叶纹理特征搜索”模式为用户提供了在特定目标而非整个图像中搜索高度相似图像的选择。两种查询模式的准确率都很高,在前30个结果图像中,平均约80%被判定为相似,这在使用内容特征的全自动图像查询系统中是令人印象深刻的。然而,专注于不同目标特征的两种查询模式在搜索相似图像方面的能力略优于“按ARGs搜索”模式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验