Xie Tianwen, Tang Weijun, Zhao Qiufeng, Zhao Jiaao
Telemedicine Center, Fudan University, Shanghai 200032, China.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2009 Dec;26(6):1237-40.
Content-based image retrieval aims at searching the similar images using low level features,and medical image retrieval needs it for the retrieval of similar images. Medical images contain not only a lot of content data, but also a lot of semantic information. This paper presents an approach by combining digital imaging and communications in medicine (DICOM) features and low level features to perform retrieval on medical image databases. At the first step, the semantic information is extracted from DICOM header for the pre-filtering of the images, and then dual-tree complex wavelet transfrom(DT-CWT) features of pre-filtered images and example images are extracted to retrieve similar images. Experimental results show that by combining the high level semantics (DICOM features) and low level content features (texture) the retrieval time is reduced and the performance of medical image retrieval is increased.
基于内容的图像检索旨在利用底层特征搜索相似图像,医学图像检索需要它来检索相似图像。医学图像不仅包含大量的内容数据,还包含大量的语义信息。本文提出了一种结合医学数字成像和通信(DICOM)特征与底层特征的方法,用于在医学图像数据库上进行检索。第一步,从DICOM头中提取语义信息以对图像进行预过滤,然后提取预过滤图像和示例图像的双树复小波变换(DT-CWT)特征以检索相似图像。实验结果表明,通过结合高层语义(DICOM特征)和底层内容特征(纹理),检索时间得以减少,医学图像检索的性能得以提高。