Suppr超能文献

再谈预后因素和预测因素。

Prognostic and predictive factors revisited.

作者信息

Hayes Daniel F

机构信息

Breast Oncology Program, University of Michigan Comprehensive Cancer Center, CCGC 6312, 1500 E. Medical Center Drive, Ann Arbor, MI 48109, USA.

出版信息

Breast. 2005 Dec;14(6):493-9. doi: 10.1016/j.breast.2005.08.023. Epub 2005 Oct 18.

Abstract

Standard prognostic factors include clinical and pathological staging, especially lymph node status and tumor size. Tumor grade and estimates of lymphatic invasion appear to be moderately strong predictive factors, but reproducibility is poor, especially for grade 2 tumors. Standard predictive factors include hormone receptor status and HER-2 amplification and/or over-expression for selection of endocrine therapy and, at least for clinical trials and in the metastatic setting, of trastuzumab, respectively. Three new markers appear particularly promising: detection of bone marrow metastases, either at baseline or after 2-4 years of follow-up; expression of UPA/PAI-1 by the primary cancer; and recognition of simultaneous multiple gene expression patterns, or "signatures." Important caveats exist for each of these. Although new technologies offer exciting and promising new approaches to determining a patient's prognosis and whether she will or will not benefit from specific therapies, few have been validated in well-designed, Level of Evidence I studies. In particular, available data are often confounded by patient selection and the effects of systemic therapy, which are often not determined prospectively, not included in analyses, and not reported adequately.

摘要

标准预后因素包括临床和病理分期,尤其是淋巴结状态和肿瘤大小。肿瘤分级和淋巴浸润评估似乎是中等强度的预测因素,但可重复性较差,尤其是对于2级肿瘤。标准预测因素包括激素受体状态以及HER-2扩增和/或过表达,分别用于选择内分泌治疗以及至少在临床试验和转移情况下选择曲妥珠单抗。有三种新标志物显得特别有前景:在基线时或随访2 - 4年后检测骨髓转移;原发癌中UPA/PAI-1的表达;以及识别同时出现的多种基因表达模式,即“特征”。对于其中每一项都存在重要的注意事项。尽管新技术为确定患者预后以及她是否会从特定治疗中获益提供了令人兴奋且有前景的新方法,但很少有在设计良好的证据等级I研究中得到验证。特别是,现有数据常常因患者选择以及全身治疗的影响而混淆,而这些影响往往未进行前瞻性确定、未纳入分析且报告不充分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验