Lu Rong, Alioua Abderrahmane, Kumar Yogesh, Eghbali Mansoureh, Stefani Enrico, Toro Ligia
Dept. Anesthesiology, UCLA, BH-509A CHS, Box 957115, Los Angeles, CA 90095-7115, USA.
J Physiol. 2006 Jan 1;570(Pt 1):65-72. doi: 10.1113/jphysiol.2005.098913. Epub 2005 Oct 20.
The basic functional unit of the large-conductance, voltage- and Ca2+-activated K+ (MaxiK, BK, BKCa) channel is a tetramer of the pore-forming alpha-subunit (MaxiKalpha) encoded by a single gene, Slo, holding multiple alternative exons. Depending on the tissue, MaxiKalpha can associate with modulatory beta-subunits (beta1-beta4) increasing its functional diversity. As MaxiK senses and regulates membrane voltage and intracellular Ca2+, it links cell excitability with cell signalling and metabolism. Thus, MaxiK is a key regulator of vital body functions, like blood flow, uresis, immunity and neurotransmission. Epilepsy with paroxysmal dyskinesia syndrome has been recognized as a MaxiKalpha-related disorder caused by a gain-of-function C-terminus mutation. This channel region is also emerging as a key recognition module containing sequences for MaxiKalpha interaction with its surrounding signalling partners, and its targeting to cell-specific microdomains. The growing list of interacting proteins highlights the possibility that associations with the C-terminus of MaxiKalpha are dynamic and depending on each cellular environment. We speculate that the molecular multiplicity of the C-terminus (and intracellular loops) dictated by alternative exons may modulate or create additional interacting sites in a tissue-specific manner. A challenge is the dissection of MaxiK macromolecular signalling complexes in different tissues and their temporal association/dissociation according to the stimulus.
大电导、电压和Ca2+激活的K+(MaxiK、BK、BKCa)通道的基本功能单位是由单个基因Slo编码的孔形成α亚基(MaxiKα)的四聚体,该基因含有多个可变外显子。根据组织的不同,MaxiKα可与调节性β亚基(β1-β4)结合,增加其功能多样性。由于MaxiK感知并调节膜电压和细胞内Ca2+,它将细胞兴奋性与细胞信号传导和代谢联系起来。因此,MaxiK是诸如血流、排尿、免疫和神经传递等重要身体功能的关键调节因子。伴有阵发性运动障碍综合征的癫痫已被确认为由功能获得性C末端突变引起的与MaxiKα相关的疾病。该通道区域也正在成为一个关键的识别模块,包含MaxiKα与其周围信号伙伴相互作用的序列,以及其靶向细胞特异性微结构域的序列。越来越多的相互作用蛋白表明,与MaxiKα C末端的结合可能是动态的,并且取决于每个细胞环境。我们推测,由可变外显子决定的C末端(和细胞内环)的分子多样性可能以组织特异性方式调节或产生额外的相互作用位点。一个挑战是剖析不同组织中的MaxiK大分子信号复合物及其根据刺激的时间关联/解离。