Kohl Ingrid, Bachmann Luis, Hallbrucker Andreas, Mayer Erwin, Loerting Thomas
Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria.
Phys Chem Chem Phys. 2005 Sep 7;7(17):3210-20. doi: 10.1039/b507651j. Epub 2005 Aug 1.
Micrometre-sized water droplets were hyperquenched on a solid substrate held at selected temperatures between 150 and 77 K. These samples were characterized by differential scanning calorimetry (DSC) and X-ray diffraction. 140 K is the upper temperature limit to obtain mainly amorphous samples on deposition within 16-37 min. DSC scans of glassy water prepared at 140 K exhibit on heating an endothermic step assignable to glass --> liquid transition, with an onset temperature (T(g)) of 136 +/- 2 K on heating at 30 K min(-1). For T(g) of approximately 136 K, water relaxes during deposition at 140 K for 16 min, moving towards metastable equilibrium. The apparent increase in heat capacity (deltaC(p)) depends, for a given rate of heating, on the rate of prior cooling, and a so-called overshoot develops. 140 K deposits cooled at a rate of 5, 2 or 0.2 K min(-1) show on subsequent reheating at a rate of 30 K min(-1) deltaC(p) values of 0.7, 1.1 and 1.7 J K(-1) mol(-1). This is consistent with liquid-like relaxation at 140 K, and it indicates that different limiting structures are obtained. When these 140 K deposits are in addition annealed at 130 K for 90 min, after slow-cooling at 5, 2 or 0.2 K min(-1), their deltaC(p) values on subsequent reheating are similar to those of hyperquenched glassy water (HGW) deposits made at 77 K and annealed at 130 K. Thus, the previous deltaC(p) value of 1.6 J K(-1) mol(-1) obtained with glassy water samples annealed at 130 K (A. Hallbrucker, E. Mayer and G. P. Johari, Philos. Mag. B, 1989, 60, 179) must be an upper-bound limit because it contains a contribution from an overshoot. The T(g) value of 140 K deposits, which had relaxed during deposition towards metastable equilibrium, is within experimental error the same as that of 140 K deposits annealed in addition at 130 K. This contradicts Yue and Angell's (Y. Yue and C. Angell, Nature, 2004, 427, 717) claim for assigning the endothermic step to a sub-T(g) peak or a "shadow" T(g). Our new data further support the proposed fragile-to-strong transition on cooling liquid water from ambient temperature into the deeply supercooled and glassy state. We also describe in detail experimental aspects to obtain HGW specimens, show the ultrastructure of the deposits using electron microscopy, and discuss the mechanism of our hyperquenching method.
将微米级的水滴在温度保持在150至77 K之间选定温度的固体基板上进行超快速淬火。这些样品通过差示扫描量热法(DSC)和X射线衍射进行表征。140 K是在16 - 37分钟内沉积时主要获得非晶态样品的上限温度。在140 K制备的玻璃态水的DSC扫描显示,加热时出现一个可归因于玻璃态→液态转变的吸热步骤,以30 K min⁻¹的速率加热时起始温度(T(g))为136 ± 2 K。对于约136 K的T(g),水在140 K沉积16分钟期间会发生弛豫,朝着亚稳平衡状态转变。在给定加热速率下,表观热容增量(deltaC(p))取决于先前的冷却速率,并且会出现所谓的过冲现象。以5、2或0.2 K min⁻¹的速率冷却的140 K沉积物,在随后以30 K min⁻¹的速率再加热时,deltaC(p)值分别为0.7、1.1和1.7 J K⁻¹ mol⁻¹。这与140 K时类似液体的弛豫现象一致,表明获得了不同的极限结构。当这些140 K沉积物再在130 K退火90分钟,分别以5、2或0.2 K min⁻¹的速率缓慢冷却后,它们随后再加热时的deltaC(p)值与在77 K制备并在130 K退火的超快速淬火玻璃态水(HGW)沉积物的deltaC(p)值相似。因此,先前用在130 K退火的玻璃态水样品获得的1.6 J K⁻¹ mol⁻¹的deltaC(p)值必定是一个上限,因为它包含了过冲的贡献。在沉积过程中朝着亚稳平衡弛豫的140 K沉积物的T(g)值,在实验误差范围内与另外在130 K退火的140 K沉积物的T(g)值相同。这与Yue和Angell(Y. Yue和C. Angell,《自然》,2004年,427卷,717页)将吸热步骤归因于低于T(g)的峰或“影子”T(g)的说法相矛盾。我们的新数据进一步支持了关于将液态水从环境温度冷却至深度过冷和玻璃态时所提出的从脆性到强性的转变。我们还详细描述了获得HGW样品的实验方面,使用电子显微镜展示了沉积物的超微结构,并讨论了我们的超快速淬火方法的机制。