Suppr超能文献

通过差示扫描量热法和X射线衍射研究了一系列外消旋β-D-半乳糖基二烷基甘油的热致相行为和相结构。

The thermotropic phase behaviour and phase structure of a homologous series of racemic beta-D-galactosyl dialkylglycerols studied by differential scanning calorimetry and X-ray diffraction.

作者信息

Mannock David A, Collins Marcus D, Kreichbaum Manfried, Harper Paul E, Gruner Sol M, McElhaney Ronald N

机构信息

Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.

出版信息

Chem Phys Lipids. 2007 Jul;148(1):26-50. doi: 10.1016/j.chemphyslip.2007.04.004. Epub 2007 Apr 19.

Abstract

The thermotropic phase behaviour of aqueous dispersions of some synthetic 1,2-di-O-alkyl-3-O-(beta-D-galactosyl)-rac-glycerols (rac-beta-D-GalDAGs) with both odd and even hydrocarbon chain lengths was studied by differential scanning calorimetry (DSC), small-angle (SAXS) and wide-angle (WAXS) X-ray diffraction. DSC heating curves show a complex pattern of lamellar (L) and nonlamellar (NL) phase polymorphism dependent on the sample's thermal history. On cooling from 95 degrees C and immediate reheating, rac-beta-D-GalDAGs typically show a single, strongly energetic phase transition, corresponding to either a lamellar gel/liquid-crystalline (L(beta)/L(alpha)) phase transition (N< or =15 carbon atoms) or a lamellar gel/inverted hexagonal (L(beta)/H(II)) phase transition (N> or =16). At higher temperatures, some shorter chain compounds (N=10-13) exhibit additional endothermic phase transitions, identified as L/NL phase transitions using SAXS/WAXS. The NL morphology and the number of associated intermediate transitions vary with hydrocarbon chain length. Typically, at temperatures just above the L(alpha) phase boundary, a region of phase coexistence consisting of two inverted cubic (Q(II)) phases are observed. The space group of the cubic phase seen on initial heating has not been determined; however, on further heating, this Q(II) phase disappears, enabling the identification of the second Q(II) phase as Pn3 m (space group Q(224)). Only the Pn3 m phase is seen on cooling. Under suitable annealing conditions, rac-beta-D-GalDAGs rapidly form highly ordered lamellar-crystalline (L(c)) phases at temperatures above (N< or =15) or below (N=16-18) the L(beta)/L(alpha) phase transition temperature (T(m)). In the N< or =15 chain length lipids, DSC heating curves show two overlapping, highly energetic, endothermic peaks on heating above T(m); corresponding changes in the first-order spacings are observed by SAXS, accompanied by two different, complex patterns of reflections in the WAXS region. The WAXS data show that there is a difference in hydrocarbon chain packing, but no difference in bilayer dimensions or hydrocarbon chain tilt for these two L(c) phases (termed L(c1) and L(c2), respectively). Continued heating of suitably annealed, shorter chain rac-beta-D-GalDAGs from the L(c2) phase results in a phase transition to an L(alpha) phase and, on further heating, to the same Q(II) or H(II) phases observed on first heating. On reheating annealed samples with longer chain lengths, a subgel phase is formed. This is characterized by a single, poorly energetic endotherm visible below the T(m). SAXS/WAXS identifies this event as an L(c)/L(beta) phase transition. However, the WAXS reflections in the di-16:0 lipid do not entirely correspond to the reflections seen for either the L(c1) or L(c2) phases present in the shorter chain rac-beta-D-GalDAGs; rather these consist of a combination of L(c1), L(c2) and L(beta) reflections, consistent with DSC data where all three phase transitions occur within a span of 5 degrees C. At very long chain lengths (N> or =19), the L(beta)/L(c) conversion process is so slow that no L(c) phases are formed over the time scale of our experiments. The L(beta)/L(c) phase conversion process is significantly faster than that seen in the corresponding rac-beta-D-GlcDAGs, but is slower than in the 1,2-sn-beta-D-GalDAGs already studied. The L(alpha)/NL phase transition temperatures are also higher in the rac-beta-D-GalDAGs than in the corresponding rac-beta-D-GlcDAGs, suggesting that the orientation of the hydroxyl at position 4 and the chirality of the glycerol molecule in the lipid/water interface influence both the L(c) and NL phase properties of these lipids, probably by controlling the relative positions of hydrogen bond donors and acceptors in the polar region of the membrane.

摘要

通过差示扫描量热法(DSC)、小角(SAXS)和广角(WAXS)X射线衍射研究了一些具有奇数和偶数碳链长度的合成1,2 - 二 - O - 烷基 - 3 - O -(β - D - 半乳糖基) - 外消旋甘油(外消旋β - D - GalDAGs)水分散体的热致相行为。DSC加热曲线显示出取决于样品热历史的层状(L)和非层状(NL)相多态性的复杂模式。从95℃冷却并立即重新加热时,外消旋β - D - GalDAGs通常显示出单一的、强烈吸热的相变,对应于层状凝胶/液晶(L(β)/L(α))相变(N≤15个碳原子)或层状凝胶/反相六方(L(β)/H(II))相变(N≥16)。在较高温度下,一些较短链化合物(N = 10 - 13)表现出额外的吸热相变,使用SAXS/WAXS鉴定为L/NL相变。NL形态和相关中间转变的数量随碳链长度而变化。通常,在略高于L(α)相边界的温度下,观察到由两个反相立方(Q(II))相组成的相共存区域。初始加热时看到的立方相的空间群尚未确定;然而,进一步加热时,该Q(II)相消失,从而能够将第二个Q(II)相鉴定为Pn3 m(空间群Q(224))。冷却时仅看到Pn3 m相。在合适的退火条件下,外消旋β - D - GalDAGs在高于(N≤15)或低于(N = 16 - 18)L(β)/L(α)相变温度(T(m))的温度下迅速形成高度有序的层状晶体(L(c))相。在N≤15链长的脂质中,DSC加热曲线在高于T(m)加热时显示出两个重叠的、强烈吸热的峰;通过SAXS观察到一级间距的相应变化,同时在WAXS区域观察到两种不同的、复杂的反射模式。WAXS数据表明,这两个L(c)相(分别称为L(c1)和L(c2))的碳链堆积存在差异,但双层尺寸或碳链倾斜度没有差异。对适当退火的较短链外消旋β - D - GalDAGs从L(c2)相继续加热会导致向L(α)相的相变,进一步加热时会转变为首次加热时观察到的相同的Q(II)或H(II)相。对具有较长链长的退火样品重新加热时,会形成亚凝胶相。其特征是在T(m)以下可见一个单一的、吸热较弱的峰。SAXS/WAXS将此事件鉴定为L(c)/L(β)相变。然而,二 - 16:0脂质中的WAXS反射并不完全对应于较短链外消旋β - D - GalDAGs中存在的L(c1)或L(c2)相的反射;相反,这些由L(c1)、L(c2)和L(β)反射的组合组成,这与DSC数据一致,其中所有三个相变都在5℃的范围内发生。在非常长的链长(N≥19)时,L(β)/L(c)转化过程非常缓慢,以至于在我们的实验时间尺度内没有形成L(c)相。L(β)/L(c)相转化过程明显快于相应的外消旋β - D - GlcDAGs中的过程,但慢于已经研究过的1,2 - sn - β - D - GalDAGs中的过程。外消旋β - D - GalDAGs中的L(α)/NL相变温度也高于相应的外消旋β - D - GlcDAGs中的温度,这表明脂质/水界面中4位羟基的取向和甘油分子的手性可能通过控制膜极性区域中氢键供体和受体的相对位置来影响这些脂质的L(c)和NL相性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验