Suppr超能文献

基于AFS理论的模糊聚类分析。

The fuzzy clustering analysis based on AFS theory.

作者信息

Liu Xiaodong, Wang Wei, Chai Tianyou

机构信息

Research Center of Information and Control, Dalian University of Technology, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2005 Oct;35(5):1013-27. doi: 10.1109/tsmcb.2005.847747.

Abstract

In the framework of axiomatic fuzzy sets theory, we first study how to impersonally and automatically determine the membership functions for fuzzy sets according to original data and facts, and a new algorithmic framework of determining membership functions and their logic operations for fuzzy sets has been proposed. Then, we apply the proposed algorithmic framework to give a new clustering algorithm and show that the algorithm is feasible. A number of illustrative examples show that this approach offers a far more flexible and effective means for the intelligent systems in real-world applications. Compared with popular fuzzy clustering algorithms, such as c-means fuzzy algorithm and k-nearest-neighbor fuzzy algorithm, the new fuzzy clustering algorithm is more simple and understandable, the data types of the attributes can be various data types or subpreference relations, even descriptions of human intuition, and the distance function and the class number need not be given beforehand.

摘要

在公理模糊集理论框架下,我们首先研究如何根据原始数据和事实客观、自动地确定模糊集的隶属函数,并提出了一种确定模糊集隶属函数及其逻辑运算的新算法框架。然后,我们应用所提出的算法框架给出一种新的聚类算法,并证明该算法是可行的。大量示例表明,这种方法为实际应用中的智能系统提供了一种更加灵活有效的手段。与流行的模糊聚类算法,如c均值模糊算法和k近邻模糊算法相比,新的模糊聚类算法更简单易懂,属性的数据类型可以是各种数据类型或子偏好关系,甚至是人类直觉的描述,并且距离函数和类别数无需预先给定。

相似文献

1
The fuzzy clustering analysis based on AFS theory.
IEEE Trans Syst Man Cybern B Cybern. 2005 Oct;35(5):1013-27. doi: 10.1109/tsmcb.2005.847747.
2
Genetically optimized fuzzy decision trees.
IEEE Trans Syst Man Cybern B Cybern. 2005 Jun;35(3):633-41. doi: 10.1109/tsmcb.2005.843975.
3
Asymmetric subsethood-product fuzzy neural inference system (ASuPFuNIS).
IEEE Trans Neural Netw. 2005 Jan;16(1):160-74. doi: 10.1109/TNN.2004.836202.
4
Hybridization of fuzzy GBML approaches for pattern classification problems.
IEEE Trans Syst Man Cybern B Cybern. 2005 Apr;35(2):359-65. doi: 10.1109/tsmcb.2004.842257.
5
Automated variable weighting in k-means type clustering.
IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):657-68. doi: 10.1109/TPAMI.2005.95.
6
Discovering fuzzy time-interval sequential patterns in sequence databases.
IEEE Trans Syst Man Cybern B Cybern. 2005 Oct;35(5):959-72. doi: 10.1109/tsmcb.2005.847741.
7
A similarity-based robust clustering method.
IEEE Trans Pattern Anal Mach Intell. 2004 Apr;26(4):434-48. doi: 10.1109/TPAMI.2004.1265860.
8
Robust H infinity fuzzy control for a class of uncertain discrete fuzzy bilinear systems.
IEEE Trans Syst Man Cybern B Cybern. 2008 Apr;38(2):510-27. doi: 10.1109/TSMCB.2007.914706.
9
Alpha-cut implemented fuzzy clustering algorithms and switching regressions.
IEEE Trans Syst Man Cybern B Cybern. 2008 Jun;38(3):588-603. doi: 10.1109/TSMCB.2008.915537.
10
Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure.
IEEE Trans Syst Man Cybern B Cybern. 2004 Aug;34(4):1907-16. doi: 10.1109/tsmcb.2004.831165.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验