Suppr超能文献

一种基于相似度的鲁棒聚类方法。

A similarity-based robust clustering method.

作者信息

Yang Miin-Shen, Wu Kuo-Lung

机构信息

Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li, Taiwan 32023, ROC.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Apr;26(4):434-48. doi: 10.1109/TPAMI.2004.1265860.

Abstract

This paper presents an alternating optimization clustering procedure called a similarity-based clustering method (SCM). It is an effective and robust approach to clustering on the basis of a total similarity objective function related to the approximate density shape estimation. We show that the data points in SCM can self-organize local optimal cluster number and volumes without using cluster validity functions or a variance-covariance matrix. The proposed clustering method is also robust to noise and outliers based on the influence function and gross error sensitivity analysis. Therefore, SCM exhibits three robust clustering characteristics: 1) robust to the initialization (cluster number and initial guesses), 2) robust to cluster volumes (ability to detect different volumes of clusters), and 3) robust to noise and outliers. Several numerical data sets and actual data are used in the SCM to show these good aspects. The computational complexity of SCM is also analyzed. Some experimental results of comparing the proposed SCM with the existing methods show the superiority of the SCM method.

摘要

本文提出了一种交替优化聚类过程,称为基于相似度的聚类方法(SCM)。它是一种基于与近似密度形状估计相关的总相似度目标函数进行聚类的有效且稳健的方法。我们表明,SCM中的数据点可以在不使用聚类有效性函数或方差协方差矩阵的情况下自组织局部最优聚类数和聚类体积。基于影响函数和粗大误差敏感性分析,所提出的聚类方法对噪声和离群值也具有鲁棒性。因此,SCM具有三个稳健的聚类特性:1)对初始化(聚类数和初始猜测)具有鲁棒性;2)对聚类体积具有鲁棒性(检测不同体积聚类的能力);3)对噪声和离群值具有鲁棒性。在SCM中使用了几个数值数据集和实际数据来展示这些优点。还分析了SCM的计算复杂度。将所提出的SCM与现有方法进行比较的一些实验结果表明了SCM方法的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验