Suppr超能文献

GA-费舍尔算法:一种基于线性判别分析且具有主成分选择的新型人脸识别算法。

GA-fisher: A new LDA-based face recognition algorithm with selection of principal components.

作者信息

Zheng Wei-Shi, Lai Jian-Huang, Yuen Pong C

机构信息

Mathematics Department, Sun Yat-sen University, Guangzhou, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2005 Oct;35(5):1065-78. doi: 10.1109/tsmcb.2005.850175.

Abstract

This paper addresses the dimension reduction problem in Fisherface for face recognition. When the number of training samples is less than the image dimension (total number of pixels), the within-class scatter matrix (Sw) in Linear Discriminant Analysis (LDA) is singular, and Principal Component Analysis (PCA) is suggested to employ in Fisherface for dimension reduction of Sw so that it becomes nonsingular. The popular method is to select the largest nonzero eigenvalues and the corresponding eigenvectors for LDA. To attenuate the illumination effect, some researchers suggested removing the three eigenvectors with the largest eigenvalues and the performance is improved. However, as far as we know, there is no systematic way to determine which eigenvalues should be used. Along this line, this paper proposes a theorem to interpret why PCA can be used in LDA and an automatic and systematic method to select the eigenvectors to be used in LDA using a Genetic Algorithm (GA). A GA-PCA is then developed. It is found that some small eigenvectors should also be used as part of the basis for dimension reduction. Using the GA-PCA to reduce the dimension, a GA-Fisher method is designed and developed. Comparing with the traditional Fisherface method, the proposed GA-Fisher offers two additional advantages. First, optimal bases for dimensionality reduction are derived from GA-PCA. Second, the computational efficiency of LDA is improved by adding a whitening procedure after dimension reduction. The Face Recognition Technology (FERET) and Carnegie Mellon University Pose, Illumination, and Expression (CMU PIE) databases are used for evaluation. Experimental results show that almost 5 % improvement compared with Fisherface can be obtained, and the results are encouraging.

摘要

本文探讨了用于人脸识别的Fisherface中的降维问题。当训练样本数量小于图像维度(像素总数)时,线性判别分析(LDA)中的类内散布矩阵(Sw)是奇异的,因此建议在Fisherface中采用主成分分析(PCA)对Sw进行降维,使其变为非奇异。常用的方法是为LDA选择最大的非零特征值和相应的特征向量。为了减弱光照影响,一些研究人员建议去除具有最大特征值的三个特征向量,性能有所提高。然而,据我们所知,没有系统的方法来确定应该使用哪些特征值。沿着这条思路,本文提出了一个定理来解释为什么PCA可以用于LDA,并提出了一种使用遗传算法(GA)自动系统地选择用于LDA的特征向量的方法。然后开发了GA-PCA。发现一些小的特征向量也应作为降维基础的一部分。使用GA-PCA进行降维,设计并开发了GA-Fisher方法。与传统的Fisherface方法相比,所提出的GA-Fisher具有两个额外的优点。第一,从GA-PCA中导出了降维的最优基。第二,通过在降维后添加白化过程提高了LDA的计算效率。使用人脸识别技术(FERET)和卡内基梅隆大学姿态、光照与表情(CMU PIE)数据库进行评估。实验结果表明,与Fisherface相比可获得近5%的改进,结果令人鼓舞。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验