Ye Jieping, Li Qi
Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 4-192 EE/CSCI Bldg., 200 Union St. SE, Minneapolis, MN 55455, USA.
IEEE Trans Pattern Anal Mach Intell. 2005 Jun;27(6):929-41. doi: 10.1109/TPAMI.2005.110.
Linear Discriminant Analysis (LDA) is a well-known method for feature extraction and dimension reduction. It has been used widely in many applications involving high-dimensional data, such as image and text classification. An intrinsic limitation of classical LDA is the so-called singularity problems; that is, it fails when all scatter matrices are singular. Many LDA extensions were proposed in the past to overcome the singularity problems. Among these extensions, PCA+LDA, a two-stage method, received relatively more attention. In PCA+LDA, the LDA stage is preceded by an intermediate dimension reduction stage using Principal Component Analysis (PCA). Most previous LDA extensions are computationally expensive, and not scalable, due to the use of Singular Value Decomposition or Generalized Singular Value Decomposition. In this paper, we propose a two-stage LDA method, namely LDA/QR, which aims to overcome the singularity problems of classical LDA, while achieving efficiency and scalability simultaneously. The key difference between LDA/QR and PCA+LDA lies in the first stage, where LDA/QR applies QR decomposition to a small matrix involving the class centroids, while PCA+LDA applies PCA to the total scatter matrix involving all training data points. We further justify the proposed algorithm by showing the relationship among LDA/QR and previous LDA methods. Extensive experiments on face images and text documents are presented to show the effectiveness of the proposed algorithm.
线性判别分析(LDA)是一种著名的特征提取和降维方法。它已广泛应用于许多涉及高维数据的应用中,如图像和文本分类。经典LDA的一个内在局限性是所谓的奇异性问题;也就是说,当所有散度矩阵都是奇异矩阵时,它就会失效。过去提出了许多LDA扩展方法来克服奇异性问题。在这些扩展方法中,PCA+LDA这种两阶段方法受到了相对更多的关注。在PCA+LDA中,LDA阶段之前有一个使用主成分分析(PCA)的中间降维阶段。由于使用奇异值分解或广义奇异值分解,大多数以前的LDA扩展计算成本高且不可扩展。在本文中,我们提出了一种两阶段LDA方法,即LDA/QR,旨在克服经典LDA的奇异性问题,同时实现效率和可扩展性。LDA/QR和PCA+LDA的关键区别在于第一阶段,LDA/QR将QR分解应用于一个涉及类质心的小矩阵,而PCA+LDA将PCA应用于一个涉及所有训练数据点的总散度矩阵。我们通过展示LDA/QR与以前的LDA方法之间的关系,进一步证明了所提出算法的合理性。文中给出了在人脸图像和文本文档上的大量实验,以证明所提出算法的有效性。