Suppr超能文献

用于曲线坐标的显式有限差分格子玻尔兹曼方法。

Explicit finite-difference lattice Boltzmann method for curvilinear coordinates.

作者信息

Guo Zhaoli, Zhao T S

机构信息

Department of Mechanical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jun;67(6 Pt 2):066709. doi: 10.1103/PhysRevE.67.066709. Epub 2003 Jun 26.

Abstract

In this paper a finite-difference-based lattice Boltzmann method for curvilinear coordinates is proposed in order to improve the computational efficiency and numerical stability of a recent method [R. Mei and W. Shyy, J. Comput. Phys. 143, 426 (1998)] in which the collision term of the Boltzmann Bhatnagar-Gross-Krook equation for discrete velocities is treated implicitly. In the present method, the implicitness of the numerical scheme is removed by introducing a distribution function different from that being used currently. As a result, an explicit finite-difference lattice Boltzmann method for curvilinear coordinates is obtained. The scheme is applied to a two-dimensional Poiseuille flow, an unsteady Couette flow, a lid-driven cavity flow, and a steady flow around a circular cylinder. The numerical results are in good agreement with the results of previous studies. Extensions to other lattice Boltzmann models based on nonuniform meshes are also discussed.

摘要

本文提出了一种基于有限差分的曲线坐标系格子玻尔兹曼方法,以提高最近一种方法[R. Mei和W. Shyy,《计算物理杂志》143, 426 (1998)]的计算效率和数值稳定性,在该方法中,离散速度的玻尔兹曼 Bhatnagar-Gross-Krook 方程的碰撞项被隐式处理。在本方法中,通过引入一个与当前使用的分布函数不同的分布函数,消除了数值格式的隐式性。结果,得到了一种用于曲线坐标系的显式有限差分格子玻尔兹曼方法。该格式被应用于二维泊肃叶流、非定常库埃特流、顶盖驱动方腔流以及圆柱绕流的稳态流动。数值结果与先前研究的结果吻合良好。文中还讨论了基于非均匀网格的其他格子玻尔兹曼模型的扩展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验