Martínez-Ratón Yuri, Velasco Enrique, Mederos Luis
Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganés, Madrid, Spain.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 1):031703. doi: 10.1103/PhysRevE.72.031703. Epub 2005 Sep 12.
Scaled particle theory for a binary mixture of hard discorectangles and for a binary mixture of hard rectangles is used to predict possible liquid-crystal demixing scenarios in two dimensions. Through a bifurcation analysis from the isotropic phase, it is shown that isotropic-nematic demixing is possible in two-dimensional liquid-crystal mixtures composed of hard convex bodies. This bifurcation analysis is tested against exact calculations of the phase diagrams in the framework of the restricted-orientation two-dimensional model (Zwanzig model). Phase diagrams of a binary mixture of hard discorectangles are calculated through the parametrization of the orientational distribution functions. The results show not only isotropic-nematic, but also nematic-nematic demixing ending in a critical point, as well as an isotropic-nematic-nematic triple point for a mixture of hard disks and hard discorectangles.
硬盘状矩形二元混合物以及硬矩形二元混合物的标度粒子理论被用于预测二维空间中可能出现的液晶相分离情况。通过对各向同性相进行分岔分析,结果表明,由硬凸体组成的二维液晶混合物中可能发生各向同性 - 向列相分离。在受限取向二维模型(兹万齐格模型)框架下,将此分岔分析与相图的精确计算结果进行了对比。通过对取向分布函数进行参数化,计算了硬盘状矩形二元混合物的相图。结果不仅显示了各向同性 - 向列相分离,还显示了在临界点结束的向列相 - 向列相分离,以及硬磁盘和硬盘状矩形混合物的各向同性 - 向列相 - 向列相三相点。