Suppr超能文献

切线硬球链流体二元混合物的各向同性-向列相和向列相-向列相转变:一个解析状态方程

The isotropic-nematic and nematic-nematic phase transition of binary mixtures of tangent hard-sphere chain fluids: an analytical equation of state.

作者信息

van Westen Thijs, Vlugt Thijs J H, Gross Joachim

机构信息

Process and Energy Laboratory, Delft University of Technology, Leeghwaterstraat 44, 2628 CA Delft, The Netherlands.

Institut für Thermodynamik und Thermische Verfahrenstechnik, Universität Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany.

出版信息

J Chem Phys. 2014 Jan 21;140(3):034504. doi: 10.1063/1.4860980.

Abstract

An analytical equation of state (EoS) is derived to describe the isotropic (I) and nematic (N) phase of linear- and partially flexible tangent hard-sphere chain fluids and their mixtures. The EoS is based on an extension of Onsager's second virial theory that was developed in our previous work [T. van Westen, B. Oyarzún, T. J. H. Vlugt, and J. Gross, J. Chem. Phys. 139, 034505 (2013)]. Higher virial coefficients are calculated using a Vega-Lago rescaling procedure, which is hereby generalized to mixtures. The EoS is used to study (1) the effect of length bidispersity on the I-N and N-N phase behavior of binary linear tangent hard-sphere chain fluid mixtures, (2) the effect of partial molecular flexibility on the binary phase diagram, and (3) the solubility of hard-sphere solutes in I- and N tangent hard-sphere chain fluids. By changing the length bidispersity, two types of phase diagrams were found. The first type is characterized by an I-N region at low pressure and a N-N demixed region at higher pressure that starts from an I-N-N triphase equilibrium. The second type does not show the I-N-N equilibrium. Instead, the N-N region starts from a lower critical point at a pressure above the I-N region. The results for the I-N region are in excellent agreement with the results from molecular simulations. It is shown that the N-N demixing is driven both by orientational and configurational/excluded volume entropy. By making the chains partially flexible, it is shown that the driving force resulting from the configurational entropy is reduced (due to a less anisotropic pair-excluded volume), resulting in a shift of the N-N demixed region to higher pressure. Compared to linear chains, no topological differences in the phase diagram were found. We show that the solubility of hard-sphere solutes decreases across the I-N phase transition. Furthermore, it is shown that by using a liquid crystal mixture as the solvent, the solubility difference can by maximized by tuning the composition. Theoretical results for the Henry's law constant of the hard-sphere solute are in good agreement with the results from molecular simulation.

摘要

推导了一个解析状态方程(EoS),用于描述线性和部分柔性切向硬球链流体及其混合物的各向同性(I)相和向列(N)相。该EoS基于在我们之前的工作中发展的昂萨格第二维里理论的扩展 [T. van Westen, B. Oyarzún, T. J. H. Vlugt, and J. Gross, J. Chem. Phys. 139, 034505 (2013)]。使用Vega-Lago重标度程序计算更高阶的维里系数,在此将其推广到混合物。该EoS用于研究:(1)长度双分散性对二元线性切向硬球链流体混合物的I-N和N-N相行为的影响;(2)部分分子柔性对二元相图的影响;(3)硬球溶质在I相和N相切向硬球链流体中的溶解度。通过改变长度双分散性,发现了两种类型的相图。第一种类型的特征是在低压下有一个I-N区域,在较高压力下有一个从I-N-N三相平衡开始的N-N混合区域。第二种类型没有显示出I-N-N平衡。相反,N-N区域从I-N区域上方的一个较低临界点开始。I-N区域的结果与分子模拟结果非常吻合。结果表明,N-N混合是由取向熵和构型/排斥体积熵共同驱动的。通过使链部分柔性化,结果表明构型熵产生的驱动力减小(由于各向异性的对排斥体积减小),导致N-N混合区域向更高压力移动。与线性链相比,在相图中未发现拓扑差异。我们表明,硬球溶质的溶解度在I-N相变过程中降低。此外,结果表明,通过使用液晶混合物作为溶剂,可以通过调节组成使溶解度差异最大化。硬球溶质亨利定律常数的理论结果与分子模拟结果吻合良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验