Dunkel Jörn, Hänggi Peter
Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Strasse 1, Postfach 1317, D-85741 Garching, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 2):036106. doi: 10.1103/PhysRevE.72.036106. Epub 2005 Sep 8.
A theory for (1+3) -dimensional relativistic Brownian motion under the influence of external force fields is put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription--i.e., the discretization rule dilemma--is elucidated (prepoint discretization rule versus midpoint discretization rule versus postpoint discretization rule). Remarkably, within our relativistic scheme we find that the postpoint rule (or the transport form) yields the only Fokker-Planck dynamics from which the relativistic Maxwell-Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions.
提出了一种在外力场影响下的(1 + 3)维相对论性布朗运动理论。从一组相对论协变但具有乘法性质的朗之万方程出发,我们描述了受迫布朗粒子的相对论随机动力学。在实验室坐标系中研究了相应的福克 - 普朗克方程。特别地,阐明了随机积分规则——即离散化规则困境(预点离散化规则与中点离散化规则与后点离散化规则)。值得注意的是,在我们的相对论方案中,我们发现后点规则(或输运形式)产生了唯一的福克 - 普朗克动力学,从中恢复相对论性麦克斯韦 - 玻尔兹曼统计作为平稳解。从一维到三维空间,相对论速度效应变得明显更加显著。此外,我们给出了在1 + 3维中自由相对论性布朗粒子渐近均方位移的数值结果。