Kaniadakis Giorgio, Hristopulos Dionissios T
Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece.
Entropy (Basel). 2018 Jun 1;20(6):426. doi: 10.3390/e20060426.
Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker-Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker-Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker-Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker-Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker-Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP) that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A , 405 (2001), univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker-Planck equation in its most general form.
主方程定义了支配晶格上各种物理过程时间演化的动力学。在连续极限情况下,主方程会导出福克 - 普朗克偏微分方程,这些方程描述了连续空间中物理系统的动力学。在过去几十年里,非线性福克 - 普朗克方程在凝聚态物理和统计物理中变得非常流行。这些方程的数值解需要使用离散化方案。然而,通过对福克 - 普朗克偏微分方程进行离散化得到的离散演化方程取决于具体的离散化方案。一般来说,离散形式与在连续极限情况下产生相应福克 - 普朗克方程的主方程不同。因此,对于给定福克 - 普朗克方程相关主方程的了解对于后者的正确数值积分极为重要,因为它提供了一种独特的、基于物理原理的离散化方案。本文表明,G. Kaniadakis在《物理A》405卷(2001年)中引入的支配多体系统粒子动力学的动力学相互作用原理(KIP)明确地定义了一个非常简单的主方程,该主方程在连续极限情况下会产生最一般形式的非线性福克 - 普朗克方程。
Entropy (Basel). 2018-6-1
Phys Rev E Stat Nonlin Soft Matter Phys. 2007-10
J Chem Phys. 2011-8-28
Phys Rev E Stat Nonlin Soft Matter Phys. 2006-6
Phys Rev E Stat Nonlin Soft Matter Phys. 2003-2
Phys Rev E Stat Nonlin Soft Matter Phys. 2005-5
Entropy (Basel). 2020-7-22
Phys Rev E Stat Nonlin Soft Matter Phys. 2012-12
Entropy (Basel). 2025-2-27
Phys Rev E. 2017-5-8
Phys Rev E Stat Nonlin Soft Matter Phys. 2015-9
Phys Rev E Stat Nonlin Soft Matter Phys. 2015-2
Phys Rev E Stat Nonlin Soft Matter Phys. 2014-6
Phys Rev E Stat Nonlin Soft Matter Phys. 2011-8
Phys Rev E Stat Nonlin Soft Matter Phys. 2007-10
Phys Rev E Stat Nonlin Soft Matter Phys. 2003-9
Phys Rev E Stat Nonlin Soft Matter Phys. 2003-2
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994-6