Suppr超能文献

基于动力学相互作用原理的晶格上的非线性动力学

Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.

作者信息

Kaniadakis Giorgio, Hristopulos Dionissios T

机构信息

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece.

出版信息

Entropy (Basel). 2018 Jun 1;20(6):426. doi: 10.3390/e20060426.

Abstract

Master equations define the dynamics that govern the time evolution of various physical processes on lattices. In the continuum limit, master equations lead to Fokker-Planck partial differential equations that represent the dynamics of physical systems in continuous spaces. Over the last few decades, nonlinear Fokker-Planck equations have become very popular in condensed matter physics and in statistical physics. Numerical solutions of these equations require the use of discretization schemes. However, the discrete evolution equation obtained by the discretization of a Fokker-Planck partial differential equation depends on the specific discretization scheme. In general, the discretized form is different from the master equation that has generated the respective Fokker-Planck equation in the continuum limit. Therefore, the knowledge of the master equation associated with a given Fokker-Planck equation is extremely important for the correct numerical integration of the latter, since it provides a unique, physically motivated discretization scheme. This paper shows that the Kinetic Interaction Principle (KIP) that governs the particle kinetics of many body systems, introduced in G. Kaniadakis, Physica A , 405 (2001), univocally defines a very simple master equation that in the continuum limit yields the nonlinear Fokker-Planck equation in its most general form.

摘要

主方程定义了支配晶格上各种物理过程时间演化的动力学。在连续极限情况下,主方程会导出福克 - 普朗克偏微分方程,这些方程描述了连续空间中物理系统的动力学。在过去几十年里,非线性福克 - 普朗克方程在凝聚态物理和统计物理中变得非常流行。这些方程的数值解需要使用离散化方案。然而,通过对福克 - 普朗克偏微分方程进行离散化得到的离散演化方程取决于具体的离散化方案。一般来说,离散形式与在连续极限情况下产生相应福克 - 普朗克方程的主方程不同。因此,对于给定福克 - 普朗克方程相关主方程的了解对于后者的正确数值积分极为重要,因为它提供了一种独特的、基于物理原理的离散化方案。本文表明,G. Kaniadakis在《物理A》405卷(2001年)中引入的支配多体系统粒子动力学的动力学相互作用原理(KIP)明确地定义了一个非常简单的主方程,该主方程在连续极限情况下会产生最一般形式的非线性福克 - 普朗克方程。

相似文献

1
Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
Entropy (Basel). 2018 Jun 1;20(6):426. doi: 10.3390/e20060426.
2
Consequences of the H theorem from nonlinear Fokker-Planck equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041123. doi: 10.1103/PhysRevE.76.041123. Epub 2007 Oct 17.
3
How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?
J Chem Phys. 2011 Aug 28;135(8):084103. doi: 10.1063/1.3625958.
4
Solving the Fokker-Planck kinetic equation on a lattice.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jun;73(6 Pt 2):066707. doi: 10.1103/PhysRevE.73.066707. Epub 2006 Jun 22.
5
Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 1):021107. doi: 10.1103/PhysRevE.67.021107. Epub 2003 Feb 21.
6
Canonical quantization of nonlinear many-body systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 May;71(5 Pt 1):051103. doi: 10.1103/PhysRevE.71.051103. Epub 2005 May 12.
7
Physically consistent numerical solver for time-dependent Fokker-Planck equations.
Phys Rev E. 2019 Mar;99(3-1):032117. doi: 10.1103/PhysRevE.99.032117.
8
Short-time expansion of one-dimensional Fokker-Planck equations with heterogeneous diffusion.
Phys Rev E. 2024 Jun;109(6-1):064106. doi: 10.1103/PhysRevE.109.064106.
10
Entropy production and nonlinear Fokker-Planck equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Dec;86(6 Pt 1):061136. doi: 10.1103/PhysRevE.86.061136. Epub 2012 Dec 27.

引用本文的文献

1
Twenty Years of Kaniadakis Entropy: Current Trends and Future Perspectives.
Entropy (Basel). 2025 Feb 27;27(3):247. doi: 10.3390/e27030247.

本文引用的文献

1
Composition law of κ-entropy for statistically independent systems.
Phys Rev E. 2017 May;95(5-1):052112. doi: 10.1103/PhysRevE.95.052112. Epub 2017 May 8.
2
Quantum Kaniadakis entropy under projective measurement.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032114. doi: 10.1103/PhysRevE.92.032114. Epub 2015 Sep 10.
3
Third law of thermodynamics as a key test of generalized entropies.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Feb;91(2):022105. doi: 10.1103/PhysRevE.91.022105. Epub 2015 Feb 6.
4
Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jun;89(6):062130. doi: 10.1103/PhysRevE.89.062130. Epub 2014 Jun 24.
5
Group entropies, correlation laws, and zeta functions.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Aug;84(2 Pt 1):021121. doi: 10.1103/PhysRevE.84.021121. Epub 2011 Aug 10.
6
Consequences of the H theorem from nonlinear Fokker-Planck equations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Oct;76(4 Pt 1):041123. doi: 10.1103/PhysRevE.76.041123. Epub 2007 Oct 17.
7
Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Sep;68(3 Pt 2):036108. doi: 10.1103/PhysRevE.68.036108. Epub 2003 Sep 12.
8
Derivation of nonlinear Fokker-Planck equations by means of approximations to the master equation.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 1):021107. doi: 10.1103/PhysRevE.67.021107. Epub 2003 Feb 21.
9
Classical model of bosons and fermions.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Jun;49(6):5103-5110. doi: 10.1103/physreve.49.5103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验