Suppr超能文献

解决蝾螈深层次的系统发育关系:线粒体和核基因组数据的分析

Resolving deep phylogenetic relationships in salamanders: analyses of mitochondrial and nuclear genomic data.

作者信息

Weisrock David W, Harmon Luke J, Larson Allan

机构信息

Department of Biology, Campus Box 1137, Washington University, St. Louis, Missouri, 63130, USA.

出版信息

Syst Biol. 2005 Oct;54(5):758-77. doi: 10.1080/10635150500234641.

Abstract

Phylogenetic relationships among salamander families illustrate analytical challenges inherent to inferring phylogenies in which terminal branches are temporally very long relative to internal branches. We present new mitochondrial DNA sequences, approximately 2,100 base pairs from the genes encoding ND1, ND2, COI, and the intervening tRNA genes for 34 species representing all 10 salamander families, to examine these relationships. Parsimony analysis of these mtDNA sequences supports monophyly of all families except Proteidae, but yields a tree largely unresolved with respect to interfamilial relationships and the phylogenetic positions of the proteid genera Necturus and Proteus. In contrast, Bayesian and maximum-likelihood analyses of the mtDNA data produce a topology concordant with phylogenetic results from nuclear-encoded rRNA sequences, and they statistically reject monophyly of the internally fertilizing salamanders, suborder Salamandroidea. Phylogenetic simulations based on our mitochondrial DNA sequences reveal that Bayesian analyses outperform parsimony in reconstructing short branches located deep in the phylogenetic history of a taxon. However, phylogenetic conflicts between our results and a recent analysis of nuclear RAG-1 gene sequences suggest that statistical rejection of a monophyletic Salamandroidea by Bayesian analyses of our mitochondrial genomic data is probably erroneous. Bayesian and likelihood-based analyses may overestimate phylogenetic precision when estimating short branches located deep in a phylogeny from data showing substitutional saturation; an analysis of nucleotide substitutions indicates that these methods may be overly sensitive to a relatively small number of sites that show substitutions judged uncommon by the favored evolutionary model.

摘要

蝾螈科之间的系统发育关系说明了推断系统发育时所固有的分析挑战,在这种系统发育中,相对于内部分支,末端分支在时间上非常长。我们呈现了新的线粒体DNA序列,这些序列来自编码ND1、ND2、COI的基因以及34个物种的中间tRNA基因,约2100个碱基对,这34个物种代表了所有10个蝾螈科,以研究这些关系。对这些线粒体DNA序列的简约分析支持除洞螈科外所有科的单系性,但得到的一棵树在科间关系以及洞螈属和泥螈属的系统发育位置方面基本未得到解决。相比之下,对线粒体DNA数据的贝叶斯分析和最大似然分析产生了与核编码rRNA序列的系统发育结果一致的拓扑结构,并且它们在统计学上拒绝了体内受精蝾螈亚目蝾螈总科的单系性。基于我们的线粒体DNA序列的系统发育模拟表明,在重建位于一个分类单元系统发育历史深处的短分支时,贝叶斯分析优于简约法。然而,我们的结果与最近对核RAG - 1基因序列的分析之间的系统发育冲突表明,通过对我们的线粒体基因组数据进行贝叶斯分析在统计学上拒绝单系的蝾螈总科可能是错误的。当从显示替换饱和的数据估计位于系统发育深处的短分支时,基于贝叶斯和似然的分析可能会高估系统发育精度;对核苷酸替换的分析表明,这些方法可能对相对少量的位点过于敏感,这些位点显示出被支持的进化模型判断为不常见的替换。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验