Jackson R J
Department of Biochemistry, 80 Tennis Court Road, University of Cambridge, Cambridge CB2 1GA, UK.
Biochem Soc Trans. 2005 Dec;33(Pt 6):1231-41. doi: 10.1042/BST0331231.
Of all the steps in mRNA translation, initiation is the one that differs most radically between prokaryotes and eukaryotes. Not only is there no equivalent of the prokaryotic Shine-Dalgarno rRNA-mRNA interaction, but also what requires only three initiation factor proteins (aggregate size approximately 125 kDa) in eubacteria needs at least 28 different polypeptides (aggregate >1600 kDa) in mammalian cells, which is actually larger than the size of the 40 S ribosomal subunit. Translation of the overwhelming majority of mammalian mRNAs occurs by a scanning mechanism, in which the 40 S ribosomal subunit, primed for initiation by the binding of several initiation factors including the eIF2 (eukaryotic initiation factor 2)-GTP-MettRNA(i) complex, is loaded on the mRNA immediately downstream of the 5'-cap, and then scans the RNA in the 5'-->3' direction. On recognition of (usually) the first AUG triplet via base-pairing with the Met-tRNA(i) anticodon, scanning ceases, triggering GTP hydrolysis and release of eIF2-GDP. Finally, ribosomal subunit joining and the release of the other initiation factors completes the initiation process. This sketchy outline conceals the fact that the exact mechanism of scanning and the precise roles of the initiation factors remain enigmatic. However, the factor requirements for initiation site selection on some viral IRESs (internal ribosome entry sites/segments) are simpler, and investigations into these IRES-dependent mechanisms (particularly picornavirus, hepatitis C virus and insect dicistrovirus IRESs) have significantly enhanced our understanding of the standard scanning mechanism. This article surveys the various alternative mechanisms of initiation site selection on mammalian (and other eukaryotic) cellular and viral mRNAs, starting from the simplest (in terms of initiation factor requirements) and working towards the most complex, which paradoxically happens to be the reverse order of their discovery.
在mRNA翻译的所有步骤中,起始阶段是原核生物和真核生物之间差异最为显著的一个步骤。不仅不存在与原核生物中Shine-Dalgarno rRNA-mRNA相互作用等效的机制,而且在真细菌中仅需三种起始因子蛋白(聚合体大小约为125 kDa)的过程,在哺乳动物细胞中却需要至少28种不同的多肽(聚合体>1600 kDa),这实际上比40 S核糖体亚基的大小还要大。绝大多数哺乳动物mRNA的翻译是通过扫描机制进行的,在这个过程中,由包括eIF2(真核起始因子2)-GTP-Met-tRNA(i)复合物在内的几种起始因子结合而启动起始过程的40 S核糖体亚基,被加载到5'-帽下游紧邻的mRNA上,然后沿5'→3'方向扫描RNA。当(通常)通过与Met-tRNA(i)反密码子碱基配对识别到第一个AUG三联体时,扫描停止,触发GTP水解并释放eIF2-GDP。最后,核糖体亚基结合以及其他起始因子的释放完成起始过程。这个粗略的概述掩盖了扫描的确切机制以及起始因子的精确作用仍然神秘莫测这一事实。然而,一些病毒IRESs(内部核糖体进入位点/片段)上起始位点选择的因子需求更为简单,对这些依赖IRES的机制(特别是微小RNA病毒、丙型肝炎病毒和昆虫双顺反子病毒IRESs)的研究显著增进了我们对标准扫描机制的理解。本文综述了哺乳动物(以及其他真核生物)细胞和病毒mRNA上起始位点选择的各种替代机制,从最简单的(就起始因子需求而言)开始,逐步深入到最复杂的,而矛盾的是,这恰好与它们被发现的顺序相反。