Jäger Stefan, Rasched Goran, Kornreich-Leshem Hagit, Engeser Marianne, Thum Oliver, Famulok Michael
Kekuké-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany.
J Am Chem Soc. 2005 Nov 2;127(43):15071-82. doi: 10.1021/ja051725b.
To broaden the applicability of chemically modified DNAs in nano- and biotechnology, material science, sensor development, and molecular recognition, strategies are required for introducing a large variety of different modifications into the same nucleic acid sequence at once. Here, we investigate the scope and limits for obtaining functionalized dsDNA by primer extension and PCR, using a broad variety of chemically modified deoxynucleotide triphosphates (dNTPs), DNA polymerases, and templates. All natural nucleobases in each strand were substituted with up to four different base-modified analogues. We studied the sequence dependence of enzymatic amplification to yield high-density functionalized DNA (fDNA) from modified dNTPs, and of fDNA templates, and found that GC-rich sequences are amplified with decreased efficiency as compared to AT-rich ones. There is also a strong dependence on the polymerase used. While family A polymerases generally performed poorly on "demanding" templates containing consecutive stretches of a particular base, family B polymerases were better suited for this purpose, in particular Pwo and Vent (exo-) DNA polymerase. A systematic analysis of fDNAs modified at increasing densities by CD spectroscopy revealed that single modified bases do not alter the overall B-type DNA structure, regardless of their chemical nature. A density of three modified bases induces conformational changes in the double helix, reflected by an inversion of the CD spectra. Our study provides a basis for establishing a generally applicable toolbox of enzymes, templates, and monomers for generating high-density functionalized DNAs for a broad range of applications.
为了拓宽化学修饰的DNA在纳米技术、生物技术、材料科学、传感器开发及分子识别等领域的应用范围,需要有策略能够一次性将多种不同修饰引入到同一核酸序列中。在此,我们使用多种化学修饰的脱氧核苷三磷酸(dNTP)、DNA聚合酶和模板,研究了通过引物延伸和PCR获得功能化双链DNA(dsDNA)的范围和局限性。每条链上的所有天然核碱基都被替换为多达四种不同的碱基修饰类似物。我们研究了酶促扩增的序列依赖性,以从修饰的dNTP和功能化DNA(fDNA)模板中产生高密度功能化DNA(fDNA),发现与富含AT的序列相比,富含GC的序列扩增效率降低。这也强烈依赖于所使用的聚合酶。虽然A族聚合酶通常在含有特定碱基连续片段的“苛刻”模板上表现不佳,但B族聚合酶更适合此目的,特别是Pwo和Vent(exo-)DNA聚合酶。通过圆二色光谱对密度不断增加的修饰fDNA进行系统分析表明,单个修饰碱基不会改变整体B型DNA结构,无论其化学性质如何。三个修饰碱基的密度会诱导双螺旋构象变化,这在圆二色光谱的反转中得到体现。我们的研究为建立一个普遍适用的酶、模板和单体工具箱奠定了基础,用于生成适用于广泛应用的高密度功能化DNA。