Shelburne Samuel A, Sumby Paul, Sitkiewicz Izabela, Granville Chanel, DeLeo Frank R, Musser James M
Department of Medicine, Center for Human Bacterial Pathogenesis, Baylor College of Medicine, Houston, TX 77030, USA.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):16037-42. doi: 10.1073/pnas.0505839102. Epub 2005 Oct 25.
The molecular genetic mechanisms used by bacteria to persist in humans are poorly understood. Group A Streptococcus (GAS) causes the majority of bacterial pharyngitis cases in humans and is prone to persistently inhabit the upper respiratory tract. To gain information about how GAS survives in and infects the oropharynx, we analyzed the transcriptome of a serotype M1 strain grown in saliva. The dynamic pattern of changes in transcripts of genes [spy0874/0875, herein named sptR and sptS (sptR/S), for saliva persistence] encoding a two-component gene regulatory system of unknown function suggested that SptR/S contributed to persistence of GAS in saliva. Consistent with this idea, an isogenic nonpolar mutant strain (DeltasptR) was dramatically less able to survive in saliva compared with the parental strain. Iterative expression microarray analysis of bacteria grown in saliva revealed that transcripts of several known and putative GAS virulence factor genes were decreased significantly in the DeltasptR mutant strain. Compared with the parental strain, the isogenic mutant strain also had altered transcripts of multiple genes encoding proteins involved in complex carbohydrate acquisition and utilization pathways. Western immunoblot analysis and real-time PCR analysis of GAS in throat swabs taken from humans with pharyngitis confirmed the findings. We conclude that SptR/S optimizes persistence of GAS in human saliva, apparently by strategically influencing metabolic pathways and virulence factor production. The discovery of a genetic program that significantly increased persistence of a major human pathogen in saliva enhances understanding of how bacteria survive in the host and suggests new therapeutic strategies.
细菌在人体内持续存在所使用的分子遗传机制目前尚不清楚。A 组链球菌(GAS)导致了人类大多数细菌性咽炎病例,并且易于在上呼吸道持续存在。为了获取有关 GAS 如何在口咽部存活和感染的信息,我们分析了在唾液中生长的 M1 血清型菌株的转录组。编码一个功能未知的双组分基因调控系统的基因[spy0874/0875,在此命名为 sptR 和 sptS(sptR/S),用于唾液持续性]的转录本动态变化模式表明,SptR/S 有助于 GAS 在唾液中持续存在。与这一观点一致的是,与亲本菌株相比,同基因非极性突变株(DeltasptR)在唾液中的存活能力显著降低。对在唾液中生长的细菌进行的迭代表达微阵列分析表明,几种已知的和推定的 GAS 毒力因子基因的转录本在 DeltasptR 突变株中显著减少。与亲本菌株相比,同基因突变株中多个编码参与复杂碳水化合物获取和利用途径的蛋白质的基因的转录本也发生了改变。对咽炎患者咽喉拭子中的 GAS 进行的 Western 免疫印迹分析和实时 PCR 分析证实了这些发现。我们得出结论,SptR/S 显然是通过策略性地影响代谢途径和毒力因子的产生来优化 GAS 在人唾液中的持续性。发现一个能显著增加一种主要人类病原体在唾液中持续性的遗传程序,增进了我们对细菌如何在宿主体内存活的理解,并提示了新的治疗策略。