Suppr超能文献

带有扩展拓扑化学原子(ETA)指数的定量结构-性质关系。VI. 苯衍生物对蝌蚪(日本林蛙)的急性毒性

QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica).

作者信息

Roy Kunal, Ghosh Gopinath

机构信息

Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Drug Theoretics and Cheminformatics Lab, Jadavpur University, Kolkata, 700 032, India.

出版信息

J Mol Model. 2006 Feb;12(3):306-16. doi: 10.1007/s00894-005-0033-7. Epub 2005 Oct 26.

Abstract

structure-toxicity relationship (QSTR) studies have proved to be a valuable approach in research on the toxicity of organic chemicals for ranking chemical substances with respect to their potential hazardous effects on living systems. With this background, we have modeled here the acute lethal toxicity of 51 benzene derivatives with recently introduced extended topochemical atom (ETA) indices [Roy and Ghosh, Internet Electron J Mol Des 2:599-620 (2003)]. We also compared the ETA relations with non-ETA models derived from different topological indices (Wiener W, Balaban J, flexibility index, Hosoya Z, Zagreb, molecular connectivity indices, E-state indices and kappa shape indices) and physicochemical parameters (AlogP98, MolRef,H_bond_donor and H_bond_acceptor). Genetic function approximation (GFA) and factor analysis (FA) were used as the data-preprocessing steps for the development of final multiple linear regression (MLR) equations. Principal-component regression analysis (PCRA) was also used to extract the total information from the ETA/non-ETA/combined matrices. All the models developed were cross-validated using leave-one-out (LOO) and leave-many-out techniques. The summary of the statistics of the best models is as follows: (1) FA-MLR: ETA model- Q 2 (LOO)=0.852, R 2=0.894; non-ETA model- Q 2=0.782, R 2=0.835; ETA + non-ETA model-Q 2 =0.815, R 2=0.859. (2) GFA-MLR: ETA model-Q 2 =0.847, R 2=0.915; non-ETA model-Q 2 =0.863, R 2=0.898; ETA + non-ETA model-Q 2 =0.859, R 2=0.893. 3. PCRA: ETA model-Q 2 =0.864, R 2=0.901; non-ETA model- Q 2=0.866, R 2=0.922; ETA + non-ETA model-Q 2=0.846, R 2=0.890. The statistical quality of the ETA models is comparable to that of non-ETA models. Again, use of non-ETA descriptors in addition to ETA descriptors does not increase the statistical acceptance of the relations significantly. The predictive potential of these models was better than that of the previously reported models using physicochemical parameters [Huang et al., Chemosphere 53:963-970 (2003)]. The relations from ETA descriptors suggest a parabolic dependence of the toxicity on molecular size. Furthermore, the toxicity increases with functionality contribution of chloro substituent and decreases with those of methoxy, hydroxy, carboxy and amino groups. This study suggests that ETA parameters are sufficiently rich in chemical information to encode the structural features that contribute significantly to the acute toxicity of benzene derivatives to Rana japonica.

摘要

结构-毒性关系(QSTR)研究已被证明是有机化学品毒性研究中的一种有价值的方法,可用于根据化学物质对生物系统的潜在危害对其进行排序。在此背景下,我们利用最近引入的扩展拓扑化学原子(ETA)指数,对51种苯衍生物的急性致死毒性进行了建模[Roy和Ghosh,《互联网电子分子设计杂志》2:599 - 620(2003)]。我们还将ETA关系与从不同拓扑指数(维纳W、巴拉班J、柔韧性指数、细矢Z、萨格勒布指数、分子连接性指数、E态指数和κ形状指数)以及物理化学参数(AlogP98、MolRef、氢键供体和氢键受体)推导得到的非ETA模型进行了比较。遗传函数逼近(GFA)和因子分析(FA)被用作数据预处理步骤,以建立最终的多元线性回归(MLR)方程。主成分回归分析(PCRA)也被用于从ETA/非ETA/组合矩阵中提取全部信息。所建立的所有模型都使用留一法(LOO)和留多法技术进行了交叉验证。最佳模型的统计总结如下:(1)FA - MLR:ETA模型 - Q2(LOO)=0.852,R2 =0.894;非ETA模型 - Q2 =0.782,R2 =0.835;ETA + 非ETA模型 - Q2 =0.815,R2 =0.859。(2)GFA - MLR:ETA模型 - Q2 =0.847,R2 =0.915;非ETA模型 - Q2 =0.863,R2 =0.898;ETA + 非ETA模型 - Q2 =0.859,R2 =0.893。3. PCRA:ETA模型 - Q2 =0.864,R2 =0.901;非ETA模型 - Q2 =0.866,R2 =0.922;ETA + 非ETA模型 - Q2 =0.846,R2 =0.890。ETA模型的统计质量与非ETA模型相当。此外,除了ETA描述符外使用非ETA描述符并不会显著提高这些关系的统计认可度。这些模型的预测潜力优于先前报道的使用物理化学参数的模型[Huang等人,《环境科学学报》53:963 - 970(2003)]。ETA描述符的关系表明毒性对分子大小呈抛物线依赖性。此外,毒性随氯取代基的官能团贡献增加而增加,随甲氧基、羟基、羧基和氨基的官能团贡献增加而降低。本研究表明,ETA参数在化学信息方面足够丰富,能够编码对苯衍生物对日本林蛙急性毒性有显著贡献的结构特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验