Suppr超能文献

基于回归的 QSAR 模型预测日本林蛙(Rana japonica)幼蛙中芳香化学品的急性毒性:校准、验证和未来发展,以支持两栖动物中化学品的风险评估。

A regression-based QSAR-model to predict acute toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica): Calibration, validation, and future developments to support risk assessment of chemicals in amphibians.

机构信息

Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy.

Unit of Dermatology and Cosmetology, IRCCS San Raffaele Hospital, Via Olgettina 60, 20132 Milan, Italy; Toxicology Division, Wageningen University, PO Box 8000, 6700 EA Wageningen, the Netherlands.

出版信息

Sci Total Environ. 2022 Jul 15;830:154795. doi: 10.1016/j.scitotenv.2022.154795. Epub 2022 Mar 25.

Abstract

Amphibian populations are undergoing a global decline worldwide. Such decline has been attributed to their unique physiology, ecology, and exposure to multiple stressors including chemicals, temperature, and biological hazards such as fungi of the Batrachochytrium genus, viruses such as Ranavirus, and habitat reduction. There are limited toxicity data for chemicals available for amphibians and few quantitative structure-activity relationship (QSAR) models have been developed and are publicly available. Such QSARs provide important tools to assess the toxicity of chemicals particularly in a data poor context. QSARs provide important tools to assess the toxicity of chemicals particularly when no toxicological data are available. This manuscript provides a description and validation of a regression-based QSAR model to predict, in a quantitative manner, acute lethal toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica). QSAR models for acute median lethal molar concentrations (LC50-12 h) of waterborne chemicals using the Monte Carlo method were developed. The statistical characteristics of the QSARs were described as average values obtained from five random distributions into training and validation sets. Predictions from the model gave satisfactory results for the overall training set (R = 0.72 and RMSE = 0.33) and were even more robust for the validation set (R = 0.96 and RMSE = 0.11). Further development of QSAR models in amphibians, particularly for other life stages and species, are discussed.

摘要

两栖动物种群在全球范围内正在减少。这种减少归因于它们独特的生理学、生态学,以及它们暴露于多种胁迫因素,包括化学物质、温度和生物危害,如蛙壶菌属真菌、Ranavirus 病毒以及栖息地减少。目前可获得的关于两栖动物的化学物质毒性数据有限,并且开发的定量构效关系(QSAR)模型数量较少且公开。这些 QSAR 提供了评估化学物质毒性的重要工具,特别是在数据匮乏的情况下。QSAR 提供了评估化学物质毒性的重要工具,特别是在没有毒理学数据的情况下。本文描述并验证了一种基于回归的 QSAR 模型,该模型可定量预测日本林蛙(Rana japonica)蝌蚪对芳香族化学物质的急性致死毒性。使用蒙特卡罗方法开发了用于预测水基化学物质急性中值致死摩尔浓度(LC50-12 h)的 QSAR 模型。从五个随机分布到训练集和验证集中获得的 QSAR 的统计特征进行了描述。该模型的预测结果对于整个训练集(R = 0.72,RMSE = 0.33)来说是令人满意的,对于验证集来说更加稳健(R = 0.96,RMSE = 0.11)。还讨论了在两栖动物中进一步开发 QSAR 模型,特别是针对其他生命阶段和物种的 QSAR 模型。

相似文献

5
Quasi-SMILES: Self-consistent models for toxicity of organic chemicals to tadpoles.准 SMILES:有机化合物对蝌蚪毒性的自洽模型。
Chemosphere. 2023 Jan;312(Pt 1):137224. doi: 10.1016/j.chemosphere.2022.137224. Epub 2022 Nov 11.

本文引用的文献

4
6
CORAL: Building up QSAR models for the chromosome aberration test.CORAL:构建用于染色体畸变试验的定量构效关系模型。
Saudi J Biol Sci. 2019 Sep;26(6):1101-1106. doi: 10.1016/j.sjbs.2018.05.013. Epub 2018 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验