Suppr超能文献

基于一维表示的分子多序列比对概况进行快速小分子相似性搜索。

Fast small molecule similarity searching with multiple alignment profiles of molecules represented in one-dimension.

作者信息

Wang Norman, DeLisle Robert K, Diller David J

机构信息

Pharmacopeia Inc., CN5350, Princeton, NJ 08543-5350, USA.

出版信息

J Med Chem. 2005 Nov 3;48(22):6980-90. doi: 10.1021/jm050563r.

Abstract

Multiple sequence alignment has proven to be a powerful method for creating protein and DNA sequence alignment profiles. These profiles of protein families are useful tools for identifying conserved motifs, such as the catalytic triad of the serine protease family or the seven transmembrane helices of the G-protein coupled receptor family. Ultimately, the understanding of the critical motifs within a family is useful for identifying new members of the family. Due to the complexity of protein-ligand recognition, no universally accepted method exists for clustering small molecules into families with the same or similar biological activity. A combination of the concept of multiple sequence alignment and the 1-dimensional molecular representation described earlier offers a new method for profiling sets of small molecules with the same biological activity. These small molecule profiles can isolate key commonalities within the set of bioactive compounds much like a multiple sequence alignment can isolate critical motifs within a protein family. The small molecule profiles then make useful tools for searching small molecule databases for new compounds with the same biological activity. The technique is demonstrated here using the human ether-a-go-go potassium channel and the kinase SRC.

摘要

多序列比对已被证明是创建蛋白质和DNA序列比对图谱的一种强大方法。这些蛋白质家族的图谱是识别保守基序的有用工具,例如丝氨酸蛋白酶家族的催化三联体或G蛋白偶联受体家族的七个跨膜螺旋。最终,了解一个家族中的关键基序有助于识别该家族的新成员。由于蛋白质-配体识别的复杂性,不存在将小分子聚类为具有相同或相似生物活性家族的普遍接受的方法。多序列比对概念与前面描述的一维分子表示法相结合,为绘制具有相同生物活性的小分子集提供了一种新方法。这些小分子图谱可以分离生物活性化合物集合中的关键共性,就像多序列比对可以分离蛋白质家族中的关键基序一样。然后,小分子图谱成为在小分子数据库中搜索具有相同生物活性新化合物的有用工具。本文使用人类醚-去极化钾通道和激酶SRC对该技术进行了演示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验