Suppr超能文献

一种基于结构的新型人乙醚-a-去极化相关基因(hERG)通道阻滞剂虚拟筛选模型。

A novel structure-based virtual screening model for the hERG channel blockers.

作者信息

Du Lupei, Li Minyong, You Qidong, Xia Lin

机构信息

Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.

出版信息

Biochem Biophys Res Commun. 2007 Apr 20;355(4):889-94. doi: 10.1016/j.bbrc.2007.02.068. Epub 2007 Feb 22.

Abstract

The hERG potassium channel is a key effector of cardiac repolarization and the blockade of this channel could cause arrhythmia. Thus, hERG channel blockade plays an important role for the potential pro-arrhythmic liability. In this report, binding of blockers to the hERG potassium channel is investigated using a combination of homology modeling, molecular docking, and molecular simulations, where blockade activities are evaluated using the linear regression model of GoldScore fitness. This structure-based virtual screening model is able to estimate the pIC(50) value of a wide range of ligands for the hERG potassium channel. The docked poses for ligands are also consistent with published mutation. Therefore, this model for the prediction of hERG channel blockade has the potential to provide cost-effective virtual screening tools for the evaluation of the cardiac liability of new chemical entities.

摘要

人乙醚 - 去极化相关基因(hERG)钾通道是心脏复极化的关键效应器,该通道的阻断可导致心律失常。因此,hERG通道阻断在潜在的促心律失常风险中起重要作用。在本报告中,结合同源建模、分子对接和分子模拟研究了阻滞剂与人乙醚 - 去极化相关基因(hERG)钾通道的结合情况,其中使用GoldScore适应度的线性回归模型评估阻断活性。这种基于结构的虚拟筛选模型能够估计多种hERG钾通道配体的半数抑制浓度的负对数值(pIC50)。配体的对接姿势也与已发表的突变一致。因此,这种预测hERG通道阻断的模型有可能为评估新化学实体的心脏风险提供具有成本效益的虚拟筛选工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验