Suppr超能文献

定量实时逆转录聚合酶链反应在体外评估抗细胞内病原体微小隐孢子虫药物疗效中的应用。

Application of quantitative real-time reverse transcription-PCR in assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum in vitro.

作者信息

Cai Xiaomin, Woods Keith M, Upton Steve J, Zhu Guan

机构信息

Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, 4467 TAMU, College Station, Texas 77843, USA.

出版信息

Antimicrob Agents Chemother. 2005 Nov;49(11):4437-42. doi: 10.1128/AAC.49.11.4437-4442.2005.

Abstract

We report here on a quantitative real-time reverse transcription-PCR (qRT-PCR) assay for assessing drug efficacy against the intracellular pathogen Cryptosporidium parvum. The qRT-PCR assay detects 18S rRNA transcripts from both parasites, that is, the cycle threshold for 18S rRNA from parasites (C(T)([P18S])) and host cells (C(T)([H18S])), and evaluates the relative expression between parasite and host rRNA levels (i.e., deltaC(T) = C(T)([P18S]) - C(T)([H18S])) to minimize experimental and operational errors. The choice of qRT-PCR over quantitative PCR (qPCR) in this study is based on the observations that (i) the relationship between the logarithm of infected parasites (log[P]) and the normalized relative level of rRNA (deltadeltaC(T)) is linear, with a fourfold dynamic range, by qRT-PCR but sigmoidal (nonlinear) by qPCR; and (ii) the level of RNA represents that of live parasites better than that of DNA, because the decay of RNA (99% in approximately 3 h) in dead parasites is faster than that of DNA (99% in approximately 24 to 48 h) under in vitro conditions. The reliability of the qRT-PCR method was validated by testing the efficacies of nitazoxanide and paromomycin on the development of two strains of C. parvum (IOWA and KSU-1) in HCT-8 cells in vitro. Both compounds displayed dose-dependent inhibitions. The observed MIC50 values for nitazoxanide and paromomycin were 0.30 to 0.45 micro/ml and 89.7 to 119.0 microg/ml, respectively, comparable to the values reported previously. Using the qRT-PCR assay, we have also observed that pyrazole could inhibit C. parvum development in vitro (MIC50 = 15.8 mM), suggesting that the recently discovered Cryptosporidium alcohol dehydrogenases may be explored as new drug targets.

摘要

我们在此报告一种用于评估针对细胞内病原体微小隐孢子虫药物疗效的定量实时逆转录聚合酶链反应(qRT-PCR)检测方法。该qRT-PCR检测方法可检测来自两种寄生虫的18S rRNA转录本,即来自寄生虫的18S rRNA的循环阈值(C(T)([P18S]))和宿主细胞的循环阈值(C(T)([H18S])),并评估寄生虫与宿主rRNA水平之间的相对表达(即,deltaC(T) = C(T)([P18S]) - C(T)([H18S])),以尽量减少实验和操作误差。本研究中选择qRT-PCR而非定量PCR(qPCR)是基于以下观察结果:(i)通过qRT-PCR,感染寄生虫的对数(log[P])与rRNA的标准化相对水平(deltadeltaC(T))之间的关系是线性的,动态范围为四倍,而通过qPCR则呈S形(非线性);(ii)RNA水平比DNA水平更能代表活寄生虫的水平,因为在体外条件下,死寄生虫中RNA的衰变(约3小时内99%)比DNA的衰变(约24至48小时内99%)更快。通过测试硝唑尼特和巴龙霉素对两株微小隐孢子虫(IOWA和KSU-1)在体外HCT-8细胞中发育的疗效,验证了qRT-PCR方法的可靠性。两种化合物均表现出剂量依赖性抑制作用。观察到的硝唑尼特和巴龙霉素的MIC50值分别为0.30至0.45微克/毫升和89.7至119.0微克/毫升,与先前报道的值相当。使用qRT-PCR检测方法,我们还观察到吡唑可在体外抑制微小隐孢子虫的发育(MIC50 = 15.8毫摩尔),这表明最近发现的隐孢子虫乙醇脱氢酶可能作为新的药物靶点进行探索。

相似文献

2
Study of 18S rRNA and rDNA stability by real-time RT-PCR in heat-inactivated Cryptosporidium parvum oocysts.
FEMS Microbiol Lett. 2003 Sep 26;226(2):237-43. doi: 10.1016/S0378-1097(03)00538-X.
3
Specific and quantitative detection and identification of Cryptosporidium hominis and C. parvum in clinical and environmental samples.
Exp Parasitol. 2013 Sep;135(1):142-7. doi: 10.1016/j.exppara.2013.06.014. Epub 2013 Jul 6.
4
High-Throughput Screening of Drugs Against the Growth of Cryptosporidium parvum In Vitro by qRT-PCR.
Methods Mol Biol. 2020;2052:319-334. doi: 10.1007/978-1-4939-9748-0_18.
5
Evaluation of putative anti-cryptosporidial drugs in an in vitro culture system.
Parasitol Res. 2013 Aug;112 Suppl 1:149-62. doi: 10.1007/s00436-013-3439-7.
7
Enrichment of Cryptosporidium parvum from in vitro culture as measured by total RNA and subsequent sequence analysis.
Mol Biochem Parasitol. 2018 Mar;220:5-9. doi: 10.1016/j.molbiopara.2017.12.004. Epub 2017 Dec 29.
8
Quantitative RT-PCR assay for high-throughput screening (HTS) of drugs against the growth of Cryptosporidium parvum in vitro.
Front Microbiol. 2015 Sep 22;6:991. doi: 10.3389/fmicb.2015.00991. eCollection 2015.

引用本文的文献

2
lysyl-tRNA synthetase inhibitors define the interplay between solubility and permeability required to achieve efficacy.
Sci Transl Med. 2024 Oct 23;16(770):eadm8631. doi: 10.1126/scitranslmed.adm8631.
4
Functional characterization of CpADF, an actin depolymerizing factor protein in Cryptosporidium parvum.
Parasitol Res. 2023 Nov;122(11):2621-2630. doi: 10.1007/s00436-023-07960-x. Epub 2023 Sep 7.
6
Susceptibility of to Plant Antiparasitic Compounds.
Pathogens. 2022 Dec 30;12(1):61. doi: 10.3390/pathogens12010061.
7
Characterization of Calcium-Dependent Protein Kinase 2A, a Potential Drug Target Against Cryptosporidiosis.
Front Microbiol. 2022 Apr 25;13:883674. doi: 10.3389/fmicb.2022.883674. eCollection 2022.
8
Comparative Characterization of CpCDPK1 and CpCDPK9, Two Potential Drug Targets Against Cryptosporidiosis.
Microorganisms. 2022 Feb 1;10(2):333. doi: 10.3390/microorganisms10020333.
10
Characterization of Three Calcium-Dependent Protein Kinases of .
Front Microbiol. 2021 Jan 12;11:622203. doi: 10.3389/fmicb.2020.622203. eCollection 2020.

本文引用的文献

1
Nitazoxanide: a new thiazolide antiparasitic agent.
Clin Infect Dis. 2005 Apr 15;40(8):1173-80. doi: 10.1086/428839. Epub 2005 Mar 14.
2
Quantitative-PCR assessment of Cryptosporidium parvum cell culture infection.
Appl Environ Microbiol. 2005 Mar;71(3):1495-500. doi: 10.1128/AEM.71.3.1495-1500.2005.
3
The genome of Cryptosporidium hominis.
Nature. 2004 Oct 28;431(7012):1107-12. doi: 10.1038/nature02977.
4
Intron-containing beta-tubulin transcripts in Cryptosporidium parvum cultured in vitro.
Microbiology (Reading). 2004 May;150(Pt 5):1191-1195. doi: 10.1099/mic.0.26897-0.
5
Complete genome sequence of the apicomplexan, Cryptosporidium parvum.
Science. 2004 Apr 16;304(5669):441-5. doi: 10.1126/science.1094786. Epub 2004 Mar 25.
6
Real-time polymerase chain reaction.
Chembiochem. 2003 Nov 7;4(11):1120-8. doi: 10.1002/cbic.200300662.
7
Cryptosporidiosis.
Curr Opin Infect Dis. 2002 Oct;15(5):523-7. doi: 10.1097/00001432-200210000-00012.
8
Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens.
J Eukaryot Microbiol. 2002 Nov-Dec;49(6):433-40. doi: 10.1111/j.1550-7408.2002.tb00224.x.
10
Immunohistochemistry based assay to determine the effects of treatments on Cryptosporidium parvum viability.
J Eukaryot Microbiol. 2001;Suppl:40S-41S. doi: 10.1111/j.1550-7408.2001.tb00447.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验