Suppr超能文献

定义人类和小鼠组成型剪接及不同可变剪接模式的特征和调控元件。

Characteristics and regulatory elements defining constitutive splicing and different modes of alternative splicing in human and mouse.

作者信息

Zheng Christina L, Fu Xiang-Dong, Gribskov Michael

机构信息

Biomedical Sciences Graduate Program, University of California-San Diego, La Jolla, CA 92093, USA.

出版信息

RNA. 2005 Dec;11(12):1777-87. doi: 10.1261/rna.2660805. Epub 2005 Oct 26.

Abstract

Alternative splicing is a major contributor to genomic complexity, disease, and development. Previous studies have captured some of the characteristics that distinguish alternative splicing from constitutive splicing. However, most published work only focuses on skipped exons and/or a single species. Here we take advantage of the highly curated data in the MAASE database (see related paper in this issue) to analyze features that characterize different modes of splicing. Our analysis confirms previous observations about alternative splicing, including weaker splicing signals at alternative splice sites, higher sequence conservation surrounding orthologous alternative exons, shorter exon length, and more frequent reading frame maintenance in skipped exons. In addition, our study reveals potentially novel regulatory principles underlying distinct modes of alternative splicing and a role of a specific class of repeat elements (transposons) in the origin/evolution of alternative exons. These features suggest diverse regulatory mechanisms and evolutionary paths for different modes of alternative splicing.

摘要

可变剪接是基因组复杂性、疾病和发育的主要促成因素。先前的研究已经捕捉到了一些区分可变剪接与组成型剪接的特征。然而,大多数已发表的工作仅关注跳跃外显子和/或单一物种。在这里,我们利用MAASE数据库中经过高度整理的数据(见本期相关论文)来分析表征不同剪接模式的特征。我们的分析证实了先前关于可变剪接的观察结果,包括可变剪接位点处较弱的剪接信号、直系同源可变外显子周围更高的序列保守性、更短的外显子长度以及跳跃外显子中更频繁的阅读框维持。此外,我们的研究揭示了不同可变剪接模式背后潜在的新调控原则以及特定类别的重复元件(转座子)在可变外显子起源/进化中的作用。这些特征表明不同可变剪接模式具有多样的调控机制和进化路径。

相似文献

2
Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons.
Mol Biol Evol. 2005 Nov;22(11):2198-208. doi: 10.1093/molbev/msi218. Epub 2005 Jul 27.
4
Conserved and species-specific alternative splicing in mammalian genomes.
BMC Evol Biol. 2007 Dec 22;7:249. doi: 10.1186/1471-2148-7-249.
6
Intronic alternative splicing regulators identified by comparative genomics in nematodes.
PLoS Comput Biol. 2006 Jul 14;2(7):e86. doi: 10.1371/journal.pcbi.0020086. Epub 2006 Jun 5.
7
Transcriptome and genome conservation of alternative splicing events in humans and mice.
Pac Symp Biocomput. 2004:66-77. doi: 10.1142/9789812704856_0007.
9
The emergence of alternative 3' and 5' splice site exons from constitutive exons.
PLoS Comput Biol. 2007 May;3(5):e95. doi: 10.1371/journal.pcbi.0030095.
10
Conserved RNA cis-elements regulate alternative splicing of Lepidopteran doublesex.
Insect Biochem Mol Biol. 2014 Jan;44:1-11. doi: 10.1016/j.ibmb.2013.10.009. Epub 2013 Nov 12.

引用本文的文献

1
2
Inverted Alu repeats in loop-out exon skipping across hominoid evolution.
bioRxiv. 2025 Mar 10:2025.03.07.642063. doi: 10.1101/2025.03.07.642063.
3
ASpdb: an integrative knowledgebase of human protein isoforms from experimental and AI-predicted structures.
Nucleic Acids Res. 2025 Jan 6;53(D1):D331-D339. doi: 10.1093/nar/gkae1018.
4
A CRISPR-dCas13 RNA-editing tool to study alternative splicing.
Nucleic Acids Res. 2024 Oct 28;52(19):11926-11939. doi: 10.1093/nar/gkae682.
6
What's Wrong in a Jump? Prediction and Validation of Splice Site Variants.
Methods Protoc. 2021 Sep 5;4(3):62. doi: 10.3390/mps4030062.
9
FAK alternative splice mRNA variants expression pattern in colorectal cancer.
Int J Cancer. 2019 Jul 15;145(2):494-502. doi: 10.1002/ijc.32120. Epub 2019 Feb 14.
10
Landscape of alternative splicing in Capra_hircus.
Sci Rep. 2018 Oct 11;8(1):15128. doi: 10.1038/s41598-018-33078-7.

本文引用的文献

1
MAASE: an alternative splicing database designed for supporting splicing microarray applications.
RNA. 2005 Dec;11(12):1767-76. doi: 10.1261/rna.2650905. Epub 2005 Oct 26.
2
Serine/arginine-rich protein-dependent suppression of exon skipping by exonic splicing enhancers.
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5002-7. doi: 10.1073/pnas.0500543102. Epub 2005 Mar 7.
3
Systematic identification and analysis of exonic splicing silencers.
Cell. 2004 Dec 17;119(6):831-45. doi: 10.1016/j.cell.2004.11.010.
4
A computational and experimental approach toward a priori identification of alternatively spliced exons.
RNA. 2004 Dec;10(12):1838-44. doi: 10.1261/rna.7136104. Epub 2004 Nov 3.
5
Variation in sequence and organization of splicing regulatory elements in vertebrate genes.
Proc Natl Acad Sci U S A. 2004 Nov 2;101(44):15700-5. doi: 10.1073/pnas.0404901101. Epub 2004 Oct 25.
7
A non-EST-based method for exon-skipping prediction.
Genome Res. 2004 Aug;14(8):1617-23. doi: 10.1101/gr.2572604.
9
Computational definition of sequence motifs governing constitutive exon splicing.
Genes Dev. 2004 Jun 1;18(11):1241-50. doi: 10.1101/gad.1195304. Epub 2004 May 14.
10
Alternative splicing in disease and therapy.
Nat Biotechnol. 2004 May;22(5):535-46. doi: 10.1038/nbt964.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验