Suppr超能文献

17种脊椎动物基因组中外显子产生与丢失的全局分析及可变剪接的作用

Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes.

作者信息

Alekseyenko Alexander V, Kim Namshin, Lee Christopher J

机构信息

Department of Biomathematics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA.

出版信息

RNA. 2007 May;13(5):661-70. doi: 10.1261/rna.325107. Epub 2007 Mar 16.

Abstract

Association of alternative splicing (AS) with accelerated rates of exon evolution in some organisms has recently aroused widespread interest in its role in evolution of eukaryotic gene structure. Previous studies were limited to analysis of exon creation or lost events in mouse and/or human only. Our multigenome approach provides a way for (1) distinguishing creation and loss events on the large scale; (2) uncovering details of the evolutionary mechanisms involved; (3) estimating the corresponding rates over a wide range of evolutionary times and organisms; and (4) assessing the impact of AS on those evolutionary rates. We use previously unpublished independent analyses of alternative splicing in five species (human, mouse, dog, cow, and zebrafish) from the ASAP database combined with genomewide multiple alignment of 17 genomes to analyze exon creation and loss of both constitutively and alternatively spliced exons in mammals, fish, and birds. Our analysis provides a comprehensive database of exon creation and loss events over 360 million years of vertebrate evolution, including tens of thousands of alternative and constitutive exons. We find that exon inclusion level is inversely related to the rate of exon creation. In addition, we provide a detailed in-depth analysis of mechanisms of exon creation and loss, which suggests that a large fraction of nonrepetitive created exons are results of ab initio creation from purely intronic sequences. Our data indicate an important role for alternative splicing in creation of new exons and provide a useful novel database resource for future genome evolution research.

摘要

可变剪接(AS)与某些生物体中外显子进化速率加快之间的关联,最近引发了人们对其在真核基因结构进化中作用的广泛关注。以往的研究仅限于仅对小鼠和/或人类中外显子产生或丢失事件的分析。我们的多基因组方法提供了一种途径,用于(1)大规模区分产生和丢失事件;(2)揭示所涉及进化机制的细节;(3)在广泛的进化时间和生物体范围内估计相应的速率;以及(4)评估可变剪接对那些进化速率的影响。我们使用来自ASAP数据库的五个物种(人类、小鼠、狗、牛和斑马鱼)中可变剪接的先前未发表的独立分析,结合17个基因组的全基因组多重比对,来分析哺乳动物、鱼类和鸟类中组成型和可变剪接外显子的外显子产生和丢失情况。我们的分析提供了一个涵盖3.6亿年脊椎动物进化过程中外显子产生和丢失事件的综合数据库,包括数万个可变和组成型外显子。我们发现外显子包含水平与外显子产生速率呈负相关。此外,我们对外显子产生和丢失的机制进行了详细深入的分析,这表明很大一部分非重复产生的外显子是由纯内含子序列从头产生的结果。我们的数据表明可变剪接在新外显子产生中起重要作用,并为未来的基因组进化研究提供了一个有用的新型数据库资源。

相似文献

3
The ASAP II database: analysis and comparative genomics of alternative splicing in 15 animal species.
Nucleic Acids Res. 2007 Jan;35(Database issue):D93-8. doi: 10.1093/nar/gkl884. Epub 2006 Nov 15.
4
Conserved and species-specific alternative splicing in mammalian genomes.
BMC Evol Biol. 2007 Dec 22;7:249. doi: 10.1186/1471-2148-7-249.
5
Bioinformatic analysis of TE-spliced new exons within human, mouse and zebrafish genomes.
Genomics. 2010 Nov;96(5):266-71. doi: 10.1016/j.ygeno.2010.08.004. Epub 2010 Aug 20.
6
Changes in exon-intron structure during vertebrate evolution affect the splicing pattern of exons.
Genome Res. 2012 Jan;22(1):35-50. doi: 10.1101/gr.119834.110. Epub 2011 Oct 5.
7
Evidence for widespread subfunctionalization of splice forms in vertebrate genomes.
Genome Res. 2015 May;25(5):624-32. doi: 10.1101/gr.184473.114. Epub 2015 Mar 19.
8
Changes in alternative splicing of human and mouse genes are accompanied by faster evolution of constitutive exons.
Mol Biol Evol. 2005 Nov;22(11):2198-208. doi: 10.1093/molbev/msi218. Epub 2005 Jul 27.
10
The effect of intron length on exon creation ratios during the evolution of mammalian genomes.
RNA. 2008 Nov;14(11):2261-73. doi: 10.1261/rna.1024908. Epub 2008 Sep 16.

引用本文的文献

1
Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms.
Mol Cell. 2025 Apr 3;85(7):1445-1466.e13. doi: 10.1016/j.molcel.2025.03.004. Epub 2025 Mar 26.
4
Differences in alternative splicing and their potential underlying factors between animals and plants.
J Adv Res. 2024 Oct;64:83-98. doi: 10.1016/j.jare.2023.11.017. Epub 2023 Nov 20.
5
Alu RNA fold links splicing with signal recognition particle proteins.
Nucleic Acids Res. 2023 Aug 25;51(15):8199-8216. doi: 10.1093/nar/gkad500.
6
Intronization Signatures in Coding Exons Reveal the Evolutionary Fluidity of Eukaryotic Gene Architecture.
Microorganisms. 2022 Sep 25;10(10):1901. doi: 10.3390/microorganisms10101901.
7
Computational Analysis of Alternative Splicing Using VAST-TOOLS and the VastDB Framework.
Methods Mol Biol. 2022;2537:97-128. doi: 10.1007/978-1-0716-2521-7_7.
8
Alternative splicing as a source of phenotypic diversity.
Nat Rev Genet. 2022 Nov;23(11):697-710. doi: 10.1038/s41576-022-00514-4. Epub 2022 Jul 12.
10
A comparison of mRNA sequencing (RNA-Seq) library preparation methods for transcriptome analysis.
BMC Genomics. 2022 Apr 13;23(1):303. doi: 10.1186/s12864-022-08543-3.

本文引用的文献

1
Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons.
Proc Natl Acad Sci U S A. 2006 Sep 5;103(36):13427-32. doi: 10.1073/pnas.0603042103. Epub 2006 Aug 28.
2
GeneAlign: a coding exon prediction tool based on phylogenetical comparisons.
Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W280-4. doi: 10.1093/nar/gkl307.
3
Alternative splicing and RNA selection pressure--evolutionary consequences for eukaryotic genomes.
Nat Rev Genet. 2006 Jul;7(7):499-509. doi: 10.1038/nrg1896. Epub 2006 Jun 13.
4
Incorporating biological information as a prior in an empirical bayes approach to analyzing microarray data.
Stat Appl Genet Mol Biol. 2005;4:Article12. doi: 10.2202/1544-6115.1124. Epub 2005 May 25.
5
The UCSC Genome Browser Database: update 2006.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D590-8. doi: 10.1093/nar/gkj144.
8
Origin and evolution of new exons in rodents.
Genome Res. 2005 Sep;15(9):1258-64. doi: 10.1101/gr.3929705. Epub 2005 Aug 18.
9
Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes.
Genome Res. 2005 Aug;15(8):1034-50. doi: 10.1101/gr.3715005. Epub 2005 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验