Suppr超能文献

用于自适应故障检测的网络流量统计分析。

Statistical analysis of network traffic for adaptive faults detection.

作者信息

Hajji Hassan

机构信息

IBM Business Consulting, 2-4-1 Marunochi Chiyoda-ku, Tokyo, Japan.

出版信息

IEEE Trans Neural Netw. 2005 Sep;16(5):1053-63. doi: 10.1109/TNN.2005.853414.

Abstract

This paper addresses the problem of normal operation baselining for automatic detection of network anomalies. A model of network traffic is presented in which studied variables are viewed as sampled from a finite mixture model. Based on the stochastic approximation of the maximum likelihood function, we propose baselining network normal operation, using the asymptotic distribution of the difference between successive estimates of model parameters. The baseline random variable is shown to be stationary, with mean zero under normal operation. Anomalous events are shown to induce an abrupt jump in the mean. Detection is formulated as an online change point problem, where the task is to process the baseline random variable realizations, sequentially, and raise alarms as soon as anomalies occur. An analytical expression of false alarm rate allows us to choose the design threshold, automatically. Extensive experimental results on a real network showed that our monitoring agent is able to detect unusual changes in the characteristics of network traffic, adapt to diurnal traffic patterns, while maintaining a low alarm rate. Despite large fluctuations in network traffic, this work proves that tailoring traffic modeling to specific goals can be efficiently achieved.

摘要

本文探讨了用于自动检测网络异常的正常运行基线设定问题。提出了一种网络流量模型,其中所研究的变量被视为从有限混合模型中采样得到。基于最大似然函数的随机逼近,我们利用模型参数连续估计值之间差异的渐近分布,提出了对网络正常运行进行基线设定的方法。结果表明,基线随机变量是平稳的,在正常运行情况下均值为零。异常事件会导致均值出现突然跳跃。检测被表述为一个在线变化点问题,其任务是顺序处理基线随机变量的实现情况,并在异常发生时立即发出警报。误报率的解析表达式使我们能够自动选择设计阈值。在真实网络上进行的大量实验结果表明,我们的监测代理能够检测到网络流量特征的异常变化,适应每日流量模式,同时保持较低的警报率。尽管网络流量波动很大,但这项工作证明了针对特定目标定制流量建模能够有效地实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验