Suppr超能文献

检测基于组件的互联网服务中的应用层故障。

Detecting application-level failures in component-based internet services.

作者信息

Kiciman Emre, Fox Armando

机构信息

Department of Computer Science, Stanford University, Stanford, CA 94305, USA.

出版信息

IEEE Trans Neural Netw. 2005 Sep;16(5):1027-41. doi: 10.1109/TNN.2005.853411.

Abstract

Most Internet services (e-commerce, search engines, etc.) suffer faults. Quickly detecting these faults can be the largest bottleneck in improving availability of the system. We present Pinpoint, a methodology for automating fault detection in Internet services by: 1) observing low-level internal structural behaviors of the service; 2) modeling the majority behavior of the system as correct; and 3) detecting anomalies in these behaviors as possible symptoms of failures. Without requiring any a priori application-specific information, Pinpoint correctly detected 89%-96% of major failures in our experiments, as compared with 20%-70% detected by current application-generic techniques.

摘要

大多数互联网服务(电子商务、搜索引擎等)都会出现故障。快速检测这些故障可能是提高系统可用性的最大瓶颈。我们提出了Pinpoint,一种通过以下方式实现互联网服务故障检测自动化的方法:1)观察服务的底层内部结构行为;2)将系统的多数行为建模为正确行为;3)将这些行为中的异常检测为可能的故障症状。无需任何先验的特定应用信息,Pinpoint在我们的实验中正确检测出了89%-96%的主要故障,相比之下,当前的通用应用技术只能检测出20%-70%的故障。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验