Suppr超能文献

通过竞争神经模型对3G蜂窝网络进行状态监测。

Condition monitoring of 3G cellular networks through competitive neural models.

作者信息

Barreto Guilherme A, Mota João C M, Souza Luis G M, Frota Rewbenio A, Aguayo Leonardo

机构信息

Department of Teleinformatics Engineering, Federal University of Ceard (UFC), Fortaleza-CE, Brazil.

出版信息

IEEE Trans Neural Netw. 2005 Sep;16(5):1064-75. doi: 10.1109/TNN.2005.853416.

Abstract

We develop an unsupervised approach to condition monitoring of cellular networks using competitive neural algorithms. Training is carried out with state vectors representing the normal functioning of a simulated CDMA2000 network. Once training is completed, global and local normality profiles (NPs) are built from the distribution of quantization errors of the training state vectors and their components, respectively. The global NP is used to evaluate the overall condition of the cellular system. If abnormal behavior is detected, local NPs are used in a component-wise fashion to find abnormal state variables. Anomaly detection tests are performed via percentile-based confidence intervals computed over the global and local NPs. We compared the performance of four competitive algorithms [winner-take-all (WTA), frequency-sensitive competitive learning (FSCL), self-organizing map (SOM), and neural-gas algorithm (NGA)] and the results suggest that the joint use of global and local NPs is more efficient and more robust than current single-threshold methods.

摘要

我们开发了一种使用竞争神经算法对蜂窝网络进行状态监测的无监督方法。使用代表模拟CDMA2000网络正常运行的状态向量进行训练。训练完成后,分别根据训练状态向量及其分量的量化误差分布构建全局和局部正常性概况(NP)。全局NP用于评估蜂窝系统的整体状况。如果检测到异常行为,则以组件方式使用局部NP来查找异常状态变量。通过在全局和局部NP上计算基于百分位数的置信区间来执行异常检测测试。我们比较了四种竞争算法[胜者全得(WTA)、频率敏感竞争学习(FSCL)、自组织映射(SOM)和神经气体算法(NGA)]的性能,结果表明,全局和局部NP的联合使用比当前的单阈值方法更高效、更稳健。

相似文献

1
Condition monitoring of 3G cellular networks through competitive neural models.
IEEE Trans Neural Netw. 2005 Sep;16(5):1064-75. doi: 10.1109/TNN.2005.853416.
2
Load characterization and anomaly detection for voice over IP traffic.
IEEE Trans Neural Netw. 2005 Sep;16(5):1019-26. doi: 10.1109/TNN.2005.853427.
3
A self-learning call admission control scheme for CDMA cellular networks.
IEEE Trans Neural Netw. 2005 Sep;16(5):1219-28. doi: 10.1109/TNN.2005.853408.
4
Detecting application-level failures in component-based internet services.
IEEE Trans Neural Netw. 2005 Sep;16(5):1027-41. doi: 10.1109/TNN.2005.853411.
5
New adaptive color quantization method based on self-organizing maps.
IEEE Trans Neural Netw. 2005 Jan;16(1):237-49. doi: 10.1109/TNN.2004.836543.
6
Dynamic neural-based buffer management for Queuing systems with self-similar characteristics.
IEEE Trans Neural Netw. 2005 Sep;16(5):1163-73. doi: 10.1109/TNN.2005.853417.
7
Neural and fuzzy computation techniques for playout delay adaptation in VoIP networks.
IEEE Trans Neural Netw. 2005 Sep;16(5):1174-94. doi: 10.1109/TNN.2005.853418.
8
New MPLS network management techniques based on adaptive learning.
IEEE Trans Neural Netw. 2005 Sep;16(5):1242-55. doi: 10.1109/TNN.2005.853428.
9
Self-organizing network services with evolutionary adaptation.
IEEE Trans Neural Netw. 2005 Sep;16(5):1269-78. doi: 10.1109/TNN.2005.853421.
10
Probabilistic approaches to fault detection in networked discrete event systems.
IEEE Trans Neural Netw. 2005 Sep;16(5):1042-52. doi: 10.1109/TNN.2005.853430.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验