Suppr超能文献

使用多个控制器和切换的无线网络自适应功率控制

Adaptive power control for wireless networks using multiple controllers and switching.

作者信息

Paul Ayanendu, Akar Mehmet, Safonov Michael G, Mitra Urbashi

机构信息

Department of Electrical Engineering-Systems, University of Southern California, Los Angeles, CA 90089, USA.

出版信息

IEEE Trans Neural Netw. 2005 Sep;16(5):1212-8. doi: 10.1109/TNN.2005.853420.

Abstract

Controlling transmitted power in a wireless network is critical for maintaining quality of service, maximizing channel utilization and minimizing near-far effect for suboptimal receivers. In this paper, a general proportional-integral-derivative (PID) type algorithm for controlling transmitted powers in wireless networks is studied and a systematic way to adapt or tune the parameters of the controller in a distributed fashion is suggested. The proposed algorithm utilizes multiple candidate PID gains. Depending on the prevailing channel conditions, it selects an optimal PID gain from the candidate gain set at each instant and places it in the feedback loop. The algorithm is data driven and can distinguish between stabilizing and destabilizing controller gains as well as rank the stabilizing controllers based on their performance. Simulation results indicate that the proposed scheme performs better than several candidate controllers, including a well known distributed power control (DPC) algorithm.

摘要

在无线网络中控制发射功率对于维持服务质量、最大化信道利用率以及将次优接收机的远近效应降至最低至关重要。本文研究了一种用于控制无线网络发射功率的通用比例积分微分(PID)型算法,并提出了一种以分布式方式调整或整定控制器参数的系统方法。所提出的算法利用多个候选PID增益。根据当前的信道条件,它在每个时刻从候选增益集中选择一个最优PID增益并将其置于反馈回路中。该算法是数据驱动的,能够区分稳定和不稳定的控制器增益,并根据其性能对稳定控制器进行排序。仿真结果表明,所提出的方案比包括一种著名的分布式功率控制(DPC)算法在内的几种候选控制器表现更好。

相似文献

1
Adaptive power control for wireless networks using multiple controllers and switching.
IEEE Trans Neural Netw. 2005 Sep;16(5):1212-8. doi: 10.1109/TNN.2005.853420.
2
New MPLS network management techniques based on adaptive learning.
IEEE Trans Neural Netw. 2005 Sep;16(5):1242-55. doi: 10.1109/TNN.2005.853428.
3
A self-learning call admission control scheme for CDMA cellular networks.
IEEE Trans Neural Netw. 2005 Sep;16(5):1219-28. doi: 10.1109/TNN.2005.853408.
4
Self-organizing network services with evolutionary adaptation.
IEEE Trans Neural Netw. 2005 Sep;16(5):1269-78. doi: 10.1109/TNN.2005.853421.
5
Randomized algorithms for stability and robustness analysis of high-speed communication networks.
IEEE Trans Neural Netw. 2005 Sep;16(5):1229-41. doi: 10.1109/TNN.2005.853412.
6
7
Detecting application-level failures in component-based internet services.
IEEE Trans Neural Netw. 2005 Sep;16(5):1027-41. doi: 10.1109/TNN.2005.853411.
8
Load characterization and anomaly detection for voice over IP traffic.
IEEE Trans Neural Netw. 2005 Sep;16(5):1019-26. doi: 10.1109/TNN.2005.853427.
9
Neural approximation of open-loop feedback rate control in satellite networks.
IEEE Trans Neural Netw. 2005 Sep;16(5):1195-211. doi: 10.1109/TNN.2005.853424.
10
Back pressure based multicast scheduling for fair bandwidth allocation.
IEEE Trans Neural Netw. 2005 Sep;16(5):1279-90. doi: 10.1109/TNN.2005.853422.

引用本文的文献

1
Network efficient power control for wireless communication systems.
ScientificWorldJournal. 2014 Feb 9;2014:650653. doi: 10.1155/2014/650653. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验