Medrano-T Rene O, Baptista Murilo S, Caldas Iberê L
Instituto de Física, Universidade de São Paulo, C. P. 66318, CEP 05315-970 São Paulo, SP, Brazil.
Chaos. 2005 Sep;15(3):33112. doi: 10.1063/1.2031978.
We find numerically small scale basic structures of homoclinic bifurcation curves in the parameter space of the Chua circuit. The distribution of these basic structures in the parameter space and their geometrical properties constitute a complete homoclinic bifurcation scenario of this system. Furthermore, these structures and the scenario are theoretically demonstrated to be generic to a large class of dynamical systems that presents, as the Chua circuit, Shilnikov homoclinic orbits. We classify the complexity of primary and subsidiary homoclinic orbits by their order given by the number of their returning loops. Our results confirm previous predictions of structures of homoclinic bifurcation curves and extend this study to high order primary orbits. Furthermore, we identify accumulations of bifurcation curves of subsidiary homoclinic orbits into bifurcation curves of both primary and subsidiary orbits.
我们在蔡氏电路的参数空间中找到了同宿分岔曲线的数值小尺度基本结构。这些基本结构在参数空间中的分布及其几何性质构成了该系统完整的同宿分岔图景。此外,从理论上证明了这些结构和图景对于一大类呈现如蔡氏电路那样的希利尼科夫同宿轨道的动力系统是通用的。我们根据主同宿轨道和次同宿轨道返回环的数量所确定的阶数对它们的复杂性进行分类。我们的结果证实了先前关于同宿分岔曲线结构的预测,并将这项研究扩展到了高阶主轨道。此外,我们还识别出了次同宿轨道的分岔曲线向主、次轨道分岔曲线的累积。