Medrano-T R O, Baptista M S, Caldas I L
Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, 05315-970 São Paulo, Brazil.
Chaos. 2006 Dec;16(4):043119. doi: 10.1063/1.2401060.
We analytically describe the complex scenario of homoclinic bifurcations in the Chua's circuit. We obtain a general scaling law that gives the ratio between bifurcation parameters of different nearby homoclinic orbits. As an application of this theoretical approach, we estimate the number of higher order subsidiary homoclinic orbits that appear between two consecutive lower order subsidiary orbits. Our analytical finds might be valid for a large class of dynamical systems and are numerically confirmed in the parameter space of the Chua's circuit.
我们通过分析描述了蔡氏电路中同宿分岔的复杂情形。我们得到了一个通用的标度律,该标度律给出了不同相邻同宿轨道的分岔参数之间的比值。作为这种理论方法的一个应用,我们估计了在两个连续的低阶子同宿轨道之间出现的高阶子同宿轨道的数量。我们的分析结果可能对一大类动力系统有效,并在蔡氏电路的参数空间中得到了数值验证。