Suppr超能文献

山桦树叶伤口诱导的氧化反应。

Wound-induced oxidative responses in mountain birch leaves.

作者信息

Ruuhola Teija, Yang Shiyong

机构信息

Section of Ecology, Department of Biology, University of Turku, FIN-20014 Turku, Finland.

出版信息

Ann Bot. 2006 Jan;97(1):29-37. doi: 10.1093/aob/mcj005. Epub 2005 Oct 27.

Abstract

AIMS

The aim of the study was to examine oxidative responses in subarctic mountain birch, Betula pubescens subsp. czerepanovii, induced by herbivory and manual wounding.

METHODS

Herbivory-induced changes in polyphenoloxidase, peroxidase and catalase activities in birch leaves were determined. A cytochemical dye, 3,3-diaminobenzidine, was used for the in situ and in vivo detection of H2O2 accumulation as a response to herbivory and wounding. To localize peroxidase activity in leaves, 10 mm H2O2 was applied to the dye reagent.

KEY RESULTS

Feeding by autumnal moth, Epirrita autumnata, larvae caused an induction in polyphenoloxidase and peroxidase activities within 24 h, and a concomitant decrease in the activity of antioxidative catalases in wounded leaves. Wounding also induced H2O2 accumulation, which may have both direct and indirect defensive properties against herbivores. Wound sites and guard cells showed a high level of peroxidase activity, which may efficiently restrict invasion by micro-organisms.

CONCLUSION

Birch oxidases together with their substrates may form an important front line in defence against herbivores and pathogens.

摘要

目的

本研究旨在检测亚北极山地桦(Betula pubescens subsp. czerepanovii)受食草动物取食和人工损伤诱导后的氧化反应。

方法

测定了桦树叶中多酚氧化酶、过氧化物酶和过氧化氢酶活性因食草动物取食而发生的变化。使用细胞化学染料3,3 - 二氨基联苯胺对因食草动物取食和损伤而积累的过氧化氢进行原位和体内检测。为了定位叶片中的过氧化物酶活性,将10 mM过氧化氢应用于染料试剂。

关键结果

秋尺蠖(Epirrita autumnata)幼虫取食在24小时内导致多酚氧化酶和过氧化物酶活性诱导增加,同时受伤叶片中抗氧化过氧化氢酶活性降低。损伤还诱导了过氧化氢的积累,其可能对食草动物具有直接和间接的防御特性。伤口部位和保卫细胞显示出高水平的过氧化物酶活性,这可能有效地限制微生物的入侵。

结论

桦树氧化酶及其底物可能在抵御食草动物和病原体方面形成重要的防线。

相似文献

1
Wound-induced oxidative responses in mountain birch leaves.
Ann Bot. 2006 Jan;97(1):29-37. doi: 10.1093/aob/mcj005. Epub 2005 Oct 27.
3
Boron fertilization enhances the induced defense of silver birch.
J Chem Ecol. 2011 May;37(5):460-71. doi: 10.1007/s10886-011-9948-x. Epub 2011 Apr 13.
4
Temperature as a modifier of plant-herbivore interaction.
J Chem Ecol. 2007 Mar;33(3):463-75. doi: 10.1007/s10886-006-9239-0.
5
Spatial responses of two herbivore groups to a geometrid larva on mountain birch.
Oecologia. 2003 Jan;134(2):203-9. doi: 10.1007/s00442-002-1082-6. Epub 2002 Dec 6.
6
Performance of the cyclic autumnal moth, Epirrita autumnata, in relation to birch mast seeding.
Oecologia. 2003 May;135(3):354-61. doi: 10.1007/s00442-003-1194-7. Epub 2003 Mar 1.
7
Effects of elevated ultraviolet-B radiation on a plant-herbivore interaction.
Oecologia. 2010 Sep;164(1):163-75. doi: 10.1007/s00442-010-1658-5. Epub 2010 May 16.
9
Foliar oxidases as mediators of the rapidly induced resistance of mountain birch against Epirrita autumnata.
Oecologia. 2008 Jan;154(4):725-30. doi: 10.1007/s00442-007-0869-x. Epub 2007 Oct 21.

引用本文的文献

1
Oxidatively Active Plant Phenolics Detected by UHPLC-DAD-MS after Enzymatic and Alkaline Oxidation.
J Chem Ecol. 2018 May;44(5):483-496. doi: 10.1007/s10886-018-0949-x. Epub 2018 Apr 11.
3
Biochemical aspects of the soybean response to herbivory injury by the brown stink bug Euschistus heros (Hemiptera: Pentatomidae).
PLoS One. 2014 Oct 21;9(10):e109735. doi: 10.1371/journal.pone.0109735. eCollection 2014.
4
Genetic and environmental factors behind foliar chemistry of the mature mountain birch.
J Chem Ecol. 2012 Jul;38(7):902-13. doi: 10.1007/s10886-012-0148-0. Epub 2012 Jun 9.
5
Boron fertilization enhances the induced defense of silver birch.
J Chem Ecol. 2011 May;37(5):460-71. doi: 10.1007/s10886-011-9948-x. Epub 2011 Apr 13.
6
Effects of elevated ultraviolet-B radiation on a plant-herbivore interaction.
Oecologia. 2010 Sep;164(1):163-75. doi: 10.1007/s00442-010-1658-5. Epub 2010 May 16.
7
Novel bifunctional nucleases, OmBBD and AtBBD1, are involved in abscisic acid-mediated callose deposition in Arabidopsis.
Plant Physiol. 2010 Feb;152(2):1015-29. doi: 10.1104/pp.109.147645. Epub 2009 Dec 16.
8
Oxidative responses of St. Augustinegrasses to feeding of southern chinch bug, Blissus insularis Barber.
J Chem Ecol. 2009 Jul;35(7):796-805. doi: 10.1007/s10886-009-9664-y. Epub 2009 Jul 9.
9
Foliar oxidases as mediators of the rapidly induced resistance of mountain birch against Epirrita autumnata.
Oecologia. 2008 Jan;154(4):725-30. doi: 10.1007/s00442-007-0869-x. Epub 2007 Oct 21.

本文引用的文献

1
Seasonal changes in birch leaf chemistry: are there trade-offs between leaf growth and accumulation of phenolics?
Oecologia. 2002 Feb;130(3):380-390. doi: 10.1007/s00442-001-0826-z. Epub 2002 Feb 1.
4
Multiplicity of biochemical factors determining quality of growing birch leaves.
Oecologia. 1999 Jul;120(1):102-112. doi: 10.1007/s004420050838.
6
7
Avoidance of antinutritive plant defense: Role of midgut pH in Colorado potato beetle.
J Chem Ecol. 1992 Apr;18(4):571-83. doi: 10.1007/BF00987820.
8
Potential role of ascorbate oxidase as a plant defense protein against insect herbivory.
J Chem Ecol. 1993 Jul;19(7):1553-68. doi: 10.1007/BF00984896.
9
Phenolics in ecological interactions: The importance of oxidation.
J Chem Ecol. 1993 Jul;19(7):1521-52. doi: 10.1007/BF00984895.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验