Suppr超能文献

利用罗丹明标记的肌钙蛋白C在去表皮豚鼠小梁中的荧光偏振研究心脏细肌丝激活动力学。

Kinetics of cardiac thin-filament activation probed by fluorescence polarization of rhodamine-labeled troponin C in skinned guinea pig trabeculae.

作者信息

Bell Marcus G, Lankford Edward B, Gonye Gregory E, Ellis-Davies Graham C R, Martyn Donald A, Regnier Michael, Barsotti Robert J

机构信息

Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania 19131, USA.

出版信息

Biophys J. 2006 Jan 15;90(2):531-43. doi: 10.1529/biophysj.105.072769. Epub 2005 Oct 28.

Abstract

A genetically engineered cardiac TnC mutant labeled at Cys-84 with tetramethylrhodamine-5-iodoacetamide dihydroiodide was passively exchanged for the endogenous form in skinned guinea pig trabeculae. The extent of exchange averaged nearly 70%, quantified by protein microarray of individual trabeculae. The uniformity of its distribution was verified by confocal microscopy. Fluorescence polarization, giving probe angle and its dispersion relative to the fiber long axis, was monitored simultaneously with isometric tension. Probe angle reflects underlying cTnC orientation. In steady-state experiments, rigor cross-bridges and Ca2+ with vanadate to inhibit cross-bridge formation produce a similar change in probe orientation as that observed with cycling cross-bridges (no Vi). Changes in probe angle were found at [Ca2+] well below those required to generate tension. Cross-bridges increased the Ca2+ dependence of angle change (cooperativity). Strong cross-bridge formation enhanced Ca2+ sensitivity and was required for full change in probe position. At submaximal [Ca2+], the thin filament regulatory system may act in a coordinated fashion, with the probe orientation of Ca2+-bound cTnC significantly affected by Ca2+ binding at neighboring regulatory units. The time course of the probe angle change and tension after photolytic release [Ca2+] by laser photolysis of NP-EGTA was Ca2+ sensitive and biphasic: a rapid component approximately 10 times faster than that of tension and a slower rate similar to that of tension. The fast component likely represents steps closely associated with Ca2+ binding to site II of cTnC, whereas the slow component may arise from cross-bridge feedback. These results suggest that the thin filament activation rate does not limit the tension time course in cardiac muscle.

摘要

用四甲基罗丹明 - 5 - 碘乙酰胺二氢碘化物标记半胱氨酸 - 84位点的基因工程心脏肌钙蛋白C(TnC)突变体,被动置换去表皮豚鼠小梁中的内源性形式。通过对单个小梁进行蛋白质微阵列定量分析,置换程度平均接近70%。通过共聚焦显微镜验证了其分布的均匀性。同时监测荧光偏振(给出探针角度及其相对于纤维长轴的离散度)和等长张力。探针角度反映了潜在的肌钙蛋白C(cTnC)取向。在稳态实验中,僵直横桥以及用钒酸盐抑制横桥形成的Ca2+产生的探针取向变化,与循环横桥(无钒酸盐)观察到的变化相似。在远低于产生张力所需的[Ca2+]浓度下就发现了探针角度的变化。横桥增加了角度变化对Ca2+的依赖性(协同性)。强烈的横桥形成增强了Ca2+敏感性,并且是探针位置完全变化所必需的。在亚最大[Ca2+]浓度下,细肌丝调节系统可能以协调的方式起作用,Ca2+结合的cTnC的探针取向受到相邻调节单元处Ca2+结合的显著影响。通过激光光解NP - EGTA光解释放[Ca2+]后,探针角度变化和张力的时间进程对Ca2+敏感且呈双相:一个快速成分比张力快约10倍且一个较慢的速率与张力相似。快速成分可能代表与Ca2+结合到cTnC的位点II密切相关的步骤,而慢速成分可能源于横桥反馈。这些结果表明细肌丝激活速率并不限制心肌中的张力时间进程。

相似文献

6
Förster resonance energy transfer structural kinetic studies of cardiac thin filament deactivation.
J Biol Chem. 2009 Jun 12;284(24):16432-16441. doi: 10.1074/jbc.M808075200. Epub 2009 Apr 15.
7
Activation of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP.
Biophys J. 1994 Nov;67(5):1933-41. doi: 10.1016/S0006-3495(94)80676-9.
8
Thin filament activation and unloaded shortening velocity of rabbit skinned muscle fibres.
J Physiol. 2003 Jul 1;550(Pt 1):205-15. doi: 10.1113/jphysiol.2003.040899. Epub 2003 May 2.
10
Activation kinetics of skinned cardiac muscle by laser photolysis of nitrophenyl-EGTA.
Biophys J. 2004 Feb;86(2):978-90. doi: 10.1016/S0006-3495(04)74173-9.

引用本文的文献

2
3
Cycling Cross-Bridges Contribute to Thin Filament Activation in Human Slow-Twitch Fibers.
Front Physiol. 2020 Mar 24;11:144. doi: 10.3389/fphys.2020.00144. eCollection 2020.
4
Kinetic mechanism of Ca²⁺-controlled changes of skeletal troponin I in psoas myofibrils.
Biophys J. 2012 Sep 19;103(6):1254-64. doi: 10.1016/j.bpj.2012.08.022.
5
The role of thin filament cooperativity in cardiac length-dependent calcium activation.
Biophys J. 2010 Nov 3;99(9):2978-86. doi: 10.1016/j.bpj.2010.09.003.
7
Regulation of fibre contraction in a rat model of myocardial ischemia.
PLoS One. 2010 Mar 4;5(3):e9528. doi: 10.1371/journal.pone.0009528.
8
The molecular basis of the steep force-calcium relation in heart muscle.
J Mol Cell Cardiol. 2010 May;48(5):859-65. doi: 10.1016/j.yjmcc.2009.11.019. Epub 2010 Jan 4.

本文引用的文献

1
Calcium-dependent changes in the flexibility of the regulatory domain of troponin C in the troponin complex.
J Biol Chem. 2005 Jun 10;280(23):21924-32. doi: 10.1074/jbc.M500574200. Epub 2005 Apr 12.
2
Ca(2+)-regulated structural changes in troponin.
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5038-43. doi: 10.1073/pnas.0408882102. Epub 2005 Mar 22.
3
Calcium, thin filaments, and the integrative biology of cardiac contractility.
Annu Rev Physiol. 2005;67:39-67. doi: 10.1146/annurev.physiol.67.040403.114025.
5
Activation kinetics of skinned cardiac muscle by laser photolysis of nitrophenyl-EGTA.
Biophys J. 2004 Feb;86(2):978-90. doi: 10.1016/S0006-3495(04)74173-9.
7
Structure of the core domain of human cardiac troponin in the Ca(2+)-saturated form.
Nature. 2003 Jul 3;424(6944):35-41. doi: 10.1038/nature01780.
8
Familial hypertrophic cardiomyopathy mutations in troponin I (K183D, G203S, K206Q) enhance filament sliding.
Physiol Genomics. 2003 Jul 7;14(2):117-28. doi: 10.1152/physiolgenomics.00101.2002.
9
Protein microarrays: meeting analytical challenges for clinical applications.
Cancer Cell. 2003 Apr;3(4):317-25. doi: 10.1016/s1535-6108(03)00086-2.
10
In situ orientations of protein domains: troponin C in skeletal muscle fibers.
Mol Cell. 2003 Apr;11(4):865-74. doi: 10.1016/s1097-2765(03)00096-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验