Radmer Randall J, Klein Teri E
Department of Genetics, School of Medicine, Stanford University, Stanford, California 94305, USA.
Biophys J. 2006 Jan 15;90(2):578-88. doi: 10.1529/biophysj.105.065276. Epub 2005 Oct 28.
In this study, we examine the relationships between the structure and stability of five related collagen-like molecules that have hydroxyproline residues occupying positions not observed in vertebrate collagen. Two of the molecules contain valine or threonine and form stable triple helices in water. Three of the molecules contain allo-threonine (an enantiomer of threonine), serine, or alanine, and are not stable. Using molecular dynamics simulation methods, we examine possible explanations for the stability difference, including considering the possibility that differences in solvent shielding of the essential interchain hydrogen bonds may result in differences in stability. By comparing the structures of threonine- and allo-threonine-containing molecules in six polar and nonpolar solvation conditions, we find that solvent shielding is not an adequate explanation for the stability difference. A closer examination of the peptides shows that the structures of the unstable molecules are looser, having weaker intermolecular hydrogen bonds. The weakened hydrogen bonds result from extended Yaa residue Psi-angles that prevent optimal geometry. The Phi-Psi-maps of the relevant residues suggest that each residue's most favorable Psi-angle determines the corresponding collagen-like molecule's stability. Additionally, we propose that these molecules illustrate a more general feature of triple-helical structures: interchain hydrogen bonds are always longer and weaker than ideal, so they are sensitive to relatively small changes in molecular structure. This sensitivity to small changes may explain why large stability differences often result from seemingly small changes in residue sequence.
在本研究中,我们研究了五个相关的类胶原蛋白分子的结构与稳定性之间的关系,这些分子的羟脯氨酸残基占据了脊椎动物胶原蛋白中未观察到的位置。其中两个分子含有缬氨酸或苏氨酸,并在水中形成稳定的三螺旋结构。另外三个分子含有别苏氨酸(苏氨酸的对映体)、丝氨酸或丙氨酸,且不稳定。我们使用分子动力学模拟方法研究了稳定性差异的可能解释,包括考虑到关键链间氢键的溶剂屏蔽差异可能导致稳定性差异的可能性。通过比较在六种极性和非极性溶剂化条件下含苏氨酸和别苏氨酸分子的结构,我们发现溶剂屏蔽不足以解释稳定性差异。对这些肽的进一步研究表明,不稳定分子的结构更松散,分子间氢键更弱。氢键减弱是由于Yaa残基的ψ角扩展,阻止了最佳几何形状。相关残基的φ-ψ图表明,每个残基最有利的ψ角决定了相应类胶原蛋白分子的稳定性。此外,我们提出这些分子说明了三螺旋结构的一个更普遍的特征:链间氢键总是比理想情况更长、更弱,因此它们对分子结构的相对小变化很敏感。这种对小变化的敏感性可能解释了为什么残基序列看似微小的变化常常导致巨大的稳定性差异。