Suppr超能文献

与灌注MRI数据量化相关的团注弥散问题。

Bolus dispersion issues related to the quantification of perfusion MRI data.

作者信息

Calamante Fernando

机构信息

Radiology and Physics Unit, Institute of Child Health, University College London, London, UK.

出版信息

J Magn Reson Imaging. 2005 Dec;22(6):718-22. doi: 10.1002/jmri.20454.

Abstract

Quantification of cerebral blood flow (CBF) using dynamic-susceptibility contrast (DSC) MRI relies on the deconvolution of the arterial input function (AIF). The AIF is commonly measured in a major artery (e.g., the middle cerebral artery), and the estimated function is used as a global AIF for the whole slice. However, the presence of bolus delay and dispersion between the artery and the tissue of interest can introduce significant errors in CBF quantification. While several methods have been introduced to minimize or eliminate the effects of bolus delay, the correction of bolus dispersion is more difficult to address because it requires a model for the vascular bed. This article summarizes how this dispersion effect can be incorporated into the model for CBF quantification, and discusses the magnitude of the errors introduced. Furthermore, alternative methods for correcting or minimizing the effects of bolus dispersion in the quantification of CBF are reviewed.

摘要

使用动态磁敏感对比(DSC)磁共振成像(MRI)对脑血流量(CBF)进行定量分析依赖于动脉输入函数(AIF)的去卷积。AIF通常在一条主要动脉(如大脑中动脉)中测量,并且所估计的函数被用作整个切片的全局AIF。然而,动脉与感兴趣组织之间存在团注延迟和弥散会在CBF定量分析中引入显著误差。虽然已经引入了几种方法来最小化或消除团注延迟的影响,但团注弥散的校正更难解决,因为它需要一个血管床模型。本文总结了如何将这种弥散效应纳入CBF定量分析模型,并讨论了所引入误差的大小。此外,还综述了在CBF定量分析中校正或最小化团注弥散影响的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验