Nelsen Stephen F, Weaver Michael N, Telo João P, Lucht Brett L, Barlow Stephen
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396, USA.
J Org Chem. 2005 Nov 11;70(23):9326-33. doi: 10.1021/jo0514218.
[Figure: see text]. The optical spectra of 10 p-phenylene-bridged delocalized intervalence compounds MC6H4M*- or *+ are analyzed using the Koopmans-based method, which considers only transitions from filled orbitals to the singly occupied orbital (SOMO), called Hoijtink type A transitions, and from the SOMO to unoccupied orbitals, Hoijtink type B transitions, and ignores configuration interaction. The radical ions with quinonoid structures, those that form ring-M double bonds with M = C(CN)2, NMe2, 3-oxo-9-azabicyclo[3.3.1], NPPh3, and O when the odd electron of the intervalence oxidation level is removed, are calculated to have the lowest-allowed type B transition lying mostly above the lowest-allowed A transition, with B(i)- A(j) decreasing in the order shown from +14 370 to -1390 cm(-1), and the more intense second-lowest-allowed type B transition B(i) - A(j) from +14 940 to +7070 cm(-1). The five radical anions with benzenoid structures, which form ring-M single bonds with X = CN, CO2Me, CHO, C3HMeBF2O2, and NO2 when the odd electron of the intervalence oxidation level is removed, have a B(i)- A(j) value of the opposite sign that increases in magnitude from -2880 to -17 050 cm(-)(1) in the order shown. Configuration interaction is of course present in the observed spectra, and the predictions ignoring it mostly overestimate transition energies by 1900-2600 cm(-1) for the quinonoid compounds (but by 450 cm(-1) for the M = C(CN)2 radical anion), and by 1000-1400 cm(-1) for the benzenoid compounds (2500 cm(-1) for the M = CN radical anion). The very simple Koopmans-based model is useful for considering the optical spectra of these radical ions.
[图:见正文]。使用基于库普曼斯的方法分析了10种对亚苯基桥连的离域价间化合物MC6H4M或+的光谱,该方法仅考虑从填充轨道到单占据轨道(SOMO)的跃迁,即霍伊廷克A型跃迁,以及从SOMO到未占据轨道的跃迁,即霍伊廷克B型跃迁,并且忽略了组态相互作用。对于醌型结构的自由基离子,当价间氧化态的单电子被移除时,与M = C(CN)2、NMe2、3-氧代-9-氮杂双环[3.3.1]、NPPh3和O形成环-M双键,计算得出最低允许的B型跃迁大多位于最低允许的A型跃迁之上,B(i)- A(j)按所示顺序从 +14370 降至 -1390 cm(-1),且强度次低的允许B型跃迁B(i) - A(j)从 +14940 到 +7070 cm(-1)。对于苯型结构的五种自由基阴离子,当价间氧化态的单电子被移除时,与X = CN、CO2Me、CHO、C3HMeBF2O2和NO2形成环-M单键,其B(i)- A(j)值具有相反的符号,按所示顺序从 -2880 到 -17050 cm(-)(1) 增大。当然,观测光谱中存在组态相互作用,忽略它的预测对于醌型化合物大多高估跃迁能量1900 - 2600 cm(-1)(但对于M = C(CN)2自由基阴离子高估450 cm(-1)),对于苯型化合物高估1000 - 1400 cm(-1)(对于M = CN自由基阴离子高估2500 cm(-1))。非常简单的基于库普曼斯的模型对于考虑这些自由基离子的光谱很有用。