Putz Mihai V
Laboratory of Structural and Computational Chemistry, Biology-Chemistry Department, West University of Timişoara, Timişoara, Romania.
ScientificWorldJournal. 2013 Jul 18;2013:348415. doi: 10.1155/2013/348415. eCollection 2013.
Three approximation levels of Koopmans' theorem are explored and applied: the first referring to the inner quantum behavior of the orbitalic energies that depart from the genuine ones in Fock space when the wave-functions' Hilbert-Banach basis set is specified to solve the many-electronic spectra of spin-orbitals' eigenstates; it is the most subtle issue regarding Koopmans' theorem as it brings many critics and refutation in the last decades, yet it is shown here as an irrefutable "observational" effect through computation, specific to any in silico spectra of an eigenproblem; the second level assumes the "frozen spin-orbitals" approximation during the extracting or adding of electrons to the frontier of the chemical system through the ionization and affinity processes, respectively; this approximation is nevertheless workable for great deal of chemical compounds, especially organic systems, and is justified for chemical reactivity and aromaticity hierarchies in an homologue series; the third and the most severe approximation regards the extension of the second one to superior orders of ionization and affinities, here studied at the level of chemical hardness compact-finite expressions up to spectral-like resolution for a paradigmatic set of aromatic carbohydrates.
第一个层次涉及轨道能量的内部量子行为,当指定波函数的希尔伯特 - 巴拿赫基集以求解自旋轨道本征态的多电子光谱时,该能量在福克空间中偏离真实能量;这是关于库普曼斯定理最微妙的问题,在过去几十年中引发了许多批评和反驳,但在此通过计算表明它是一种无可辩驳的“观测”效应,特定于任何本征问题的计算机模拟光谱;第二个层次在通过电离和亲和过程分别向化学体系的前沿提取或添加电子时,假设采用“冻结自旋轨道”近似;然而,这种近似对于大量化合物,尤其是有机体系是可行的,并且对于同系物系列中的化学反应性和芳香性层次具有合理性;第三个也是最严格的近似是将第二个层次扩展到更高阶的电离和亲和性,这里在化学硬度紧凑有限表达式的层面上进行研究,直至一组典型芳香碳水化合物的类似光谱分辨率。