Chubb Charles, Inagaki Yoshiyuki, Sheu Phillip, Cummings Brian, Wasserman Andrea, Head Elizabeth, Cotman Carl
Department of Cognitive Sciences, and Institute for Mathematical Behavioral Sciences, University of California, Irvine, USA.
Neurobiol Aging. 2006 Oct;27(10):1462-76. doi: 10.1016/j.neurobiolaging.2005.08.023. Epub 2005 Nov 4.
We describe a computer application, "BioVision", that can be trained to quickly and effectively classify and quantify user definable histological objects (e.g., senile plaques, neurofibrillary tangles) within single or double-labeled immunocytochemically stained sections. For a given image population, BioVision is interactively trained (in Independent User Mode) by an investigator to perform the desired classifications. This training yields a statistical model of the different types of objects occurring in the target image population. The resulting model can then be used (in Automated User Mode) to classify all objects in any image or images from the target population. BioVision simplifies the quantification of complex visual objects and improves inter-rater reliability. The program accomplishes classification in two major stages: pixel classification and blob classification. In pixel classification, each pixel is assigned to one of some number of substance classes, based on its chromatic properties and local context, reflecting basic histological distinctions of interest. In the blob classification phase, the image's pixels are first partitioned into "blobs": maximal connected sets of pixels assigned to the same substance class. Then, based on its size, shape, textural and contextual properties, each blob is assigned to a histological object class. A Bayesian classifier is used in each of the pixel and blob classification stages. We report several tests of BioVision. First, we applied BioVision to classify senile plaques and neurofibrillary tangles in several test cases of Alzheimer's brain immunostained for beta-amyloid and PHF-tau and compared the results to those produced by experienced investigators. BioVision was trained to classify Plaque-type blobs as either plaques or plaque-type nonentities, and tangle-type blobs as either tangles or tangle-type nonentities. BioVision classified the objects with an accuracy comparable to the trained investigator. Next, we applied BioVision to the task of counting all the tangles in hippocampal images from 22 Alzheimer's disease (AD) cases selected to span a broad range of dementia levels from the tissue repository of UC Irvine's Center for the study of Brain Aging and Dementia. The tangle counts produced by BioVision proved to be significantly better predictors of the cases' adjusted MMSE scores than any of tangle load, age at death, post mortem interval or the interval between the last MMSE score and death.
我们介绍了一种计算机应用程序“BioVision”,它可以通过训练快速有效地对单标记或双标记免疫细胞化学染色切片中的用户可定义组织学对象(如老年斑、神经原纤维缠结)进行分类和定量。对于给定的图像群体,研究人员可以在独立用户模式下对BioVision进行交互式训练,以执行所需的分类。这种训练产生了目标图像群体中出现的不同类型对象的统计模型。然后,所得模型可用于(自动用户模式)对目标群体中任何一幅或多幅图像中的所有对象进行分类。BioVision简化了复杂视觉对象的定量分析,并提高了评分者间的可靠性。该程序通过两个主要阶段完成分类:像素分类和斑点分类。在像素分类中,根据每个像素的颜色特性和局部上下文,将其分配到若干物质类别中的一个,以反映感兴趣的基本组织学差异。在斑点分类阶段,图像的像素首先被划分为“斑点”:分配到同一物质类别的最大连通像素集。然后,根据其大小、形状、纹理和上下文属性,将每个斑点分配到一个组织学对象类别。在像素和斑点分类阶段均使用贝叶斯分类器。我们报告了对BioVision的几项测试。首先,我们将BioVision应用于对用β淀粉样蛋白和PHF-tau免疫染色的阿尔茨海默病大脑的几个测试病例中的老年斑和神经原纤维缠结进行分类,并将结果与经验丰富的研究人员得出的结果进行比较。BioVision被训练将斑块型斑点分类为斑块或斑块型非实体,将缠结型斑点分类为缠结或缠结型非实体。BioVision对对象的分类准确率与训练有素的研究人员相当。接下来,我们将BioVision应用于对来自加州大学欧文分校脑老化与痴呆研究中心组织库中22例阿尔茨海默病(AD)病例的海马图像中的所有缠结进行计数的任务,这些病例被选来涵盖广泛的痴呆水平。事实证明,BioVision得出的缠结计数比缠结负荷、死亡年龄、死后间隔或最后一次MMSE评分与死亡之间的间隔中的任何一项都能更好地预测病例的调整后MMSE评分。