Suppr超能文献

使用无监督支持向量机对 MR 图像中的淀粉样斑块进行自动分割。

Automatic segmentation of amyloid plaques in MR images using unsupervised support vector machines.

机构信息

Center for Basic MR Research, NorthShore University HealthSystem, Evanston, Illinois 60201, USA.

出版信息

Magn Reson Med. 2012 Jun;67(6):1794-802. doi: 10.1002/mrm.23138. Epub 2011 Aug 16.

Abstract

Deposition of the β-amyloid peptide (Aβ) is an important pathological hallmark of Alzheimer's disease (AD). However, reliable quantification of amyloid plaques in both human and animal brains remains a challenge. We present here a novel automatic plaque segmentation algorithm based on the intrinsic MR signal characteristics of plaques. This algorithm identifies plaque candidates in MR data by using watershed transform, which extracts regions with low intensities completely surrounded by higher intensity neighbors. These candidates are classified as plaque or nonplaque by an unsupervised learning method using features derived from the MR data intensity. The algorithm performance is validated by comparison with histology. We also demonstrate the algorithm's ability to detect age-related changes in plaque load ex vivo in amyloid precursor protein (APP) transgenic mice that coexpress five familial AD mutations (5xFAD mice). To our knowledge, this study represents the first quantitative method for characterizing amyloid plaques in MRI data. The proposed method can be used to describe the spatiotemporal progression of amyloid deposition, which is necessary for understanding the evolution of plaque pathology in mouse models of Alzheimer's disease and to evaluate the efficacy of emergent amyloid-targeting therapies in preclinical trials.

摘要

β-淀粉样肽(Aβ)的沉积是阿尔茨海默病(AD)的重要病理学标志。然而,在人和动物大脑中可靠地定量淀粉样斑块仍然是一个挑战。我们在这里提出了一种新的基于斑块固有磁共振信号特征的自动斑块分割算法。该算法通过分水岭变换来识别磁共振数据中的斑块候选区域,该变换提取完全被高强度邻域包围的低强度区域。这些候选区域通过使用从磁共振数据强度中提取的特征的无监督学习方法被分类为斑块或非斑块。通过与组织学比较验证了算法的性能。我们还展示了该算法在共表达五种家族性 AD 突变的淀粉样前体蛋白(APP)转基因小鼠(5xFAD 小鼠)中检测体外与年龄相关的斑块负荷变化的能力。据我们所知,这项研究代表了在 MRI 数据中对淀粉样斑块进行定量描述的第一种方法。所提出的方法可用于描述淀粉样沉积的时空进展,这对于理解阿尔茨海默病小鼠模型中斑块病理学的演变以及评估新兴的针对淀粉样蛋白的治疗方法在临床前试验中的疗效是必要的。

相似文献

1
Automatic segmentation of amyloid plaques in MR images using unsupervised support vector machines.
Magn Reson Med. 2012 Jun;67(6):1794-802. doi: 10.1002/mrm.23138. Epub 2011 Aug 16.
2
High throughput object-based image analysis of β-amyloid plaques in human and transgenic mouse brain.
J Neurosci Methods. 2012 Feb 15;204(1):179-188. doi: 10.1016/j.jneumeth.2011.10.003. Epub 2011 Oct 12.
5
Fully automated and adaptive detection of amyloid plaques in stained brain sections of Alzheimer transgenic mice.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):960-8. doi: 10.1007/978-3-540-75759-7_116.
6
In vivo measurement of plaque burden in a mouse model of Alzheimer's disease.
J Magn Reson Imaging. 2006 Nov;24(5):1011-7. doi: 10.1002/jmri.20751.
8
Imaging beta amyloid aggregation and iron accumulation in Alzheimer's disease using quantitative susceptibility mapping MRI.
Neuroimage. 2019 May 1;191:176-185. doi: 10.1016/j.neuroimage.2019.02.019. Epub 2019 Feb 7.
9
A standardized method to automatically segment amyloid plaques in Congo Red stained sections from Alzheimer transgenic mice.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5593-6. doi: 10.1109/IEMBS.2007.4353614.

引用本文的文献

1
Supervised learning to quantify amyloidosis in whole brains of an Alzheimer's disease mouse model acquired with optical projection tomography.
Biomed Opt Express. 2019 May 28;10(6):3041-3060. doi: 10.1364/BOE.10.003041. eCollection 2019 Jun 1.

本文引用的文献

1
Segmentation of clustered nuclei with shape markers and marking function.
IEEE Trans Biomed Eng. 2009 Mar;56(3):741-8. doi: 10.1109/TBME.2008.2008635. Epub 2008 Nov 11.
2
Anatomy-guided lung lobe segmentation in X-ray CT images.
IEEE Trans Med Imaging. 2009 Feb;28(2):202-14. doi: 10.1109/TMI.2008.929101.
3
Watershed deconvolution for cell segmentation.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:375-8. doi: 10.1109/IEMBS.2008.4649168.
4
Post-mortem correlates of in vivo PiB-PET amyloid imaging in a typical case of Alzheimer's disease.
Brain. 2008 Jun;131(Pt 6):1630-45. doi: 10.1093/brain/awn016. Epub 2008 Mar 12.
5
In vivo visualization of senile-plaque-like pathology in Alzheimer's disease patients by MR microscopy on a 7T system.
J Neuroimaging. 2008 Apr;18(2):125-9. doi: 10.1111/j.1552-6569.2007.00179.x. Epub 2007 Oct 22.
7
An overview of statistical learning theory.
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.
8
Fully automated and adaptive detection of amyloid plaques in stained brain sections of Alzheimer transgenic mice.
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):960-8. doi: 10.1007/978-3-540-75759-7_116.
9
A standardized method to automatically segment amyloid plaques in Congo Red stained sections from Alzheimer transgenic mice.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5593-6. doi: 10.1109/IEMBS.2007.4353614.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验