Suppr超能文献

探索RNA发夹的复杂折叠动力学:II. 序列、长度和错误折叠状态的影响。

Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states.

作者信息

Zhang Wenbing, Chen Shi-Jie

机构信息

Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, Missouri, USA.

出版信息

Biophys J. 2006 Feb 1;90(3):778-87. doi: 10.1529/biophysj.105.062950. Epub 2005 Nov 4.

Abstract

The complexity of RNA hairpin folding arises from the interplay between the loop formation, the disruption of the slow-breaking misfolded states, and the formation of the slow-forming native base stacks. We investigate the general physical mechanism for the dependence of the RNA hairpin folding kinetics on the sequence and the length of the hairpin loop and the helix stem. For example, 1), the folding would slow down when a stable GC basepair moves to the middle of the stem; 2), hairpin with GC basepair near the loop would fold/unfold faster than the one with GC near the tail of the stem; 3), within a certain range of the stem length, a longer stem can cause faster folding; and 4), certain misfolded states can assist folding through the formation of scaffold structures to lower the entropic barrier for the folding. All our findings are directly applicable and quantitatively testable in experiments. In addition, our results can be useful for molecular design to achieve desirable fast/slow-folding hairpins, hairpins with/without specific misfolded intermediates, and hairpins that fold along designed pathways.

摘要

RNA发夹折叠的复杂性源于环形成、缓慢破坏的错误折叠状态的瓦解以及缓慢形成的天然碱基堆积之间的相互作用。我们研究了RNA发夹折叠动力学对发夹环和螺旋茎的序列及长度依赖性的一般物理机制。例如,1)当一个稳定的GC碱基对移至茎的中部时,折叠会减慢;2)环附近有GC碱基对的发夹比茎尾部附近有GC碱基对的发夹折叠/解折叠更快;3)在茎长度的一定范围内,较长的茎可导致更快的折叠;4)某些错误折叠状态可通过形成支架结构来辅助折叠,以降低折叠的熵垒。我们所有的发现都可直接应用于实验且能进行定量测试。此外,我们的结果对于实现所需的快速/缓慢折叠发夹、有/无特定错误折叠中间体的发夹以及沿设计途径折叠的发夹的分子设计可能是有用的。

相似文献

1
Exploring the complex folding kinetics of RNA hairpins: II. Effect of sequence, length, and misfolded states.
Biophys J. 2006 Feb 1;90(3):778-87. doi: 10.1529/biophysj.105.062950. Epub 2005 Nov 4.
2
Exploring the complex folding kinetics of RNA hairpins: I. General folding kinetics analysis.
Biophys J. 2006 Feb 1;90(3):765-77. doi: 10.1529/biophysj.105.062935. Epub 2005 Nov 4.
3
Structures, kinetics, thermodynamics, and biological functions of RNA hairpins.
Annu Rev Phys Chem. 2008;59:79-103. doi: 10.1146/annurev.physchem.59.032607.093743.
4
RNA hairpin-folding kinetics.
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1931-6. doi: 10.1073/pnas.032443099. Epub 2002 Feb 12.
5
Effect of loop composition on the stability and folding kinetics of RNA hairpins with large loops.
Biochemistry. 2015 Mar 17;54(10):1886-96. doi: 10.1021/bi5014276. Epub 2015 Mar 4.
7
Exploring the energy landscape of a small RNA hairpin.
J Am Chem Soc. 2006 Feb 8;128(5):1523-30. doi: 10.1021/ja0553856.
9
Structural parameters affecting the kinetics of RNA hairpin formation.
Nucleic Acids Res. 2006 Jul 19;34(12):3568-76. doi: 10.1093/nar/gkl445. Print 2006.
10
Loop dependence of the stability and dynamics of nucleic acid hairpins.
Nucleic Acids Res. 2008 Mar;36(4):1098-112. doi: 10.1093/nar/gkm1083. Epub 2007 Dec 20.

引用本文的文献

1
Inverted Molecular Beacons as Reaction-Based Hybridization Probes for Small-Molecule Activation by Nucleic Acid Inputs.
ACS Chem Biol. 2025 Aug 15;20(8):1990-1998. doi: 10.1021/acschembio.5c00333. Epub 2025 Jul 15.
2
Computational modeling of cotranscriptional RNA folding.
Comput Struct Biotechnol J. 2025 Jun 11;27:2638-2648. doi: 10.1016/j.csbj.2025.06.005. eCollection 2025.
3
Ligand-dependent tRNA processing by a rationally designed RNase P riboswitch.
Nucleic Acids Res. 2021 Feb 22;49(3):1784-1800. doi: 10.1093/nar/gkaa1282.
4
Modulation and Visualization of EF-G Power Stroke During Ribosomal Translocation.
Chembiochem. 2019 Dec 2;20(23):2927-2935. doi: 10.1002/cbic.201900276. Epub 2019 Sep 20.
5
Predicting Cotranscriptional Folding Kinetics For Riboswitch.
J Phys Chem B. 2018 Aug 2;122(30):7484-7496. doi: 10.1021/acs.jpcb.8b04249. Epub 2018 Jul 19.
6
Understanding the kinetic mechanism of RNA single base pair formation.
Proc Natl Acad Sci U S A. 2016 Jan 5;113(1):116-21. doi: 10.1073/pnas.1517511113. Epub 2015 Dec 22.
7
Design criteria for synthetic riboswitches acting on transcription.
RNA Biol. 2015;12(2):221-31. doi: 10.1080/15476286.2015.1017235.
8
Importance of diffuse metal ion binding to RNA.
Met Ions Life Sci. 2011;9:101-24.
9
Perturbation-based Markovian transmission model for probing allosteric dynamics of large macromolecular assembling: a study of GroEL-GroES.
PLoS Comput Biol. 2009 Oct;5(10):e1000526. doi: 10.1371/journal.pcbi.1000526. Epub 2009 Oct 2.
10
RNA folding: conformational statistics, folding kinetics, and ion electrostatics.
Annu Rev Biophys. 2008;37:197-214. doi: 10.1146/annurev.biophys.37.032807.125957.

本文引用的文献

1
Analyzing the biopolymer folding rates and pathways using kinetic cluster method.
J Chem Phys. 2003 Oct 22;119(16):8716-8729. doi: 10.1063/1.1613255.
2
Master equation approach to finding the rate-limiting steps in biopolymer folding.
J Chem Phys. 2003 Feb 15;118(7):3413-3420. doi: 10.1063/1.1538596.
4
Does native state topology determine the RNA folding mechanism?
J Mol Biol. 2004 Apr 2;337(4):789-97. doi: 10.1016/j.jmb.2004.02.024.
5
Slow nucleic acid unzipping kinetics from sequence-defined barriers.
Eur Phys J E Soft Matter. 2003 Feb;10(2):153-61. doi: 10.1140/epje/e2003-00019-8.
7
Insights into nucleic acid conformational dynamics from massively parallel stochastic simulations.
Biophys J. 2003 Aug;85(2):790-803. doi: 10.1016/S0006-3495(03)74520-2.
9
RNA simulations: probing hairpin unfolding and the dynamics of a GNRA tetraloop.
J Mol Biol. 2002 Apr 5;317(4):493-506. doi: 10.1006/jmbi.2002.5447.
10
RNA hairpin-folding kinetics.
Proc Natl Acad Sci U S A. 2002 Feb 19;99(4):1931-6. doi: 10.1073/pnas.032443099. Epub 2002 Feb 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验