Department of Physics , Zhejiang University of Science and Technology , Hangzhou 310023 , P. R. China.
Department of Physics, Department of Biochemistry, and University of Missouri Informatics Institute , University of Missouri , Columbia , Missouri 65211 , United States.
J Phys Chem B. 2018 Aug 2;122(30):7484-7496. doi: 10.1021/acs.jpcb.8b04249. Epub 2018 Jul 19.
On the basis of a helix-based transition rate model, we developed a new method for sampling cotranscriptional RNA conformational ensemble and the prediction of cotranscriptional folding kinetics. Applications to E. coli. SRP RNA and pbuE riboswitch indicate that the model may provide reliable predictions for the cotranscriptional folding pathways and population kinetics. For E. coli. SRP RNA, the predicted population kinetics and the folding pathway are consistent with the SHAPE profiles in the recent cotranscriptional SHAPE-seq experiments. For the pbuE riboswitch, the model predicts the transcriptional termination efficiency as a function of the force. The theoretical results show (a) a force-induced transition from the aptamer (antiterminator) to the terminator structure and (b) the different folding pathways for the riboswitch with and without the ligand (adenine). More specifically, without adenine, the aptamer structure emerges as a short-lived kinetic transient state instead of a thermodynamically stable intermediate state. Furthermore, from the predicted extension-time curves, the model identifies a series of conformational switches in the pulling process, where the predicted relative residence times for the different structures are in accordance with the experimental data. The model may provide a new tool for quantitative predictions of cotranscriptional folding kinetics, and results can offer useful insights into cotranscriptional folding-related RNA functions such as regulation of gene expression with riboswitches.
基于螺旋过渡速率模型,我们开发了一种新的方法来采样共转录 RNA 构象集合并预测共转录折叠动力学。该方法在大肠杆菌 SRP RNA 和 pbuE 核糖开关上的应用表明,该模型可以为共转录折叠途径和种群动力学提供可靠的预测。对于大肠杆菌 SRP RNA,预测的种群动力学和折叠途径与最近共转录 SHAPE-seq 实验中的 SHAPE 图谱一致。对于 pbuE 核糖开关,该模型预测转录终止效率是力的函数。理论结果表明:(a)力诱导从适体(抗终止子)到终止子结构的转变;(b)配体(腺嘌呤)存在和不存在时,核糖开关的折叠途径不同。更具体地说,没有腺嘌呤时,适体结构不是热力学稳定的中间态,而是短暂的动力学瞬态。此外,从预测的延伸时间曲线中,模型在拉伸过程中识别出一系列构象开关,其中不同结构的预测相对停留时间与实验数据一致。该模型可为共转录折叠动力学的定量预测提供新工具,结果可为核糖开关等与共转录折叠相关的 RNA 功能(如基因表达调控)提供有用的见解。