Sanz Luis, Bravo de la Parra Rafael
Departamento de Matemáticas, E.T.S.I Industriales, Universidad Politécnica de Madrid, José Gutiérrez Abascal, 2, 28006 Madrid, Spain.
Math Biosci. 2007 Mar;206(1):134-54. doi: 10.1016/j.mbs.2005.03.015. Epub 2005 Nov 7.
In this work we extend previous results regarding the use of approximate aggregation techniques to simplify the study of discrete time models for populations that live in an environment that changes randomly with time. Approximate aggregation techniques allow one to transform a complex system involving many coupled variables and in which there are processes with different time scales, by a simpler reduced model with a fewer number of 'global' variables, in such a way that the dynamics of the former can be approximated by that of the latter. We present the reduction of a stochastic multiregional model in which the population, structured by age and spatial location, lives in a random environment and in which migration is fast with respect to demography. However, the technique works in much more general settings as, for example, those of stage-structured populations living in a multipatch environment. By manipulating the original system and appropriately defining the global variables we obtain a simpler system. The paper concentrates on establishing relationships between the original and the reduced systems for a given separation of time scales between the two processes. In particular, we relate the original state variables and the global variables and, in the case the pattern of temporal variation is Markovian, we relate the presence of strong stochastic ergodicity for the original and reduced systems. Moreover, we relate different measures of asymptotic population growth for these systems.
在这项工作中,我们扩展了先前关于使用近似聚合技术的结果,以简化对生活在随时间随机变化环境中的种群离散时间模型的研究。近似聚合技术使人们能够通过一个具有较少“全局”变量的更简单的简化模型,来变换一个涉及许多耦合变量且存在不同时间尺度过程的复杂系统,使得前者的动态可以由后者的动态来近似。我们给出了一个随机多区域模型的简化,其中按年龄和空间位置结构化的种群生活在随机环境中,且迁移相对于人口统计学而言是快速的。然而,该技术在更一般的情况下也适用,例如生活在多斑块环境中的阶段结构化种群的情况。通过对原始系统进行操作并适当定义全局变量,我们得到了一个更简单的系统。本文专注于为两个过程之间给定的时间尺度分离,建立原始系统和简化系统之间的关系。特别地,我们关联了原始状态变量和全局变量,并且在时间变化模式是马尔可夫的情况下,我们关联了原始系统和简化系统的强随机遍历性的存在。此外,我们还关联了这些系统的渐近种群增长的不同度量。