Suppr超能文献

结构化种群在随机环境中的持久性。

Persistence of structured populations in random environments.

作者信息

Benaïm Michel, Schreiber Sebastian J

机构信息

Institut de Mathématiques, Université de Neuchâtel, Switzerland.

出版信息

Theor Popul Biol. 2009 Aug;76(1):19-34. doi: 10.1016/j.tpb.2009.03.007. Epub 2009 Apr 7.

Abstract

Environmental fluctuations often have different impacts on individuals that differ in size, age, or spatial location. To understand how population structure, environmental fluctuations, and density-dependent interactions influence population dynamics, we provide a general theory for persistence for density-dependent matrix models in random environments. For populations with compensating density dependence, exhibiting "bounded" dynamics, and living in a stationary environment, we show that persistence is determined by the stochastic growth rate (alternatively, dominant Lyapunov exponent) when the population is rare. If this stochastic growth rate is negative, then the total population abundance goes to zero with probability one. If this stochastic growth rate is positive, there is a unique positive stationary distribution. Provided there are initially some individuals in the population, the population converges in distribution to this stationary distribution and the empirical measures almost surely converge to the distribution of the stationary distribution. For models with overcompensating density-dependence, weaker results are proven. Methods to estimate stochastic growth rates are presented. To illustrate the utility of these results, applications to unstructured, spatially structured, and stage-structured population models are given. For instance, we show that diffusively coupled sink populations can persist provided that within patch fitness is sufficiently variable in time but not strongly correlated across space.

摘要

环境波动通常对大小、年龄或空间位置不同的个体有不同影响。为了理解种群结构、环境波动和密度依赖相互作用如何影响种群动态,我们为随机环境中密度依赖矩阵模型的持续性提供了一个通用理论。对于具有补偿性密度依赖、呈现“有界”动态且生活在稳定环境中的种群,我们表明,当种群稀少时,持续性由随机增长率(或者主李雅普诺夫指数)决定。如果这个随机增长率为负,那么总种群数量以概率1趋于零。如果这个随机增长率为正,则存在唯一的正平稳分布。假设种群最初有一些个体,种群在分布上收敛到这个平稳分布,并且经验测度几乎必然收敛到平稳分布的分布。对于具有过度补偿密度依赖的模型,证明了较弱的结果。还给出了估计随机增长率的方法。为了说明这些结果的实用性,给出了对非结构化、空间结构化和阶段结构化种群模型的应用。例如,我们表明,只要斑块内适合度在时间上有足够的变异性但在空间上没有强相关性,扩散耦合的汇种群就可以持续存在。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验